Что означает экспонента в математике
В данной публикации мы рассмотрим, что такое экспонента, как выглядит ее график, приведем формулу, с помощью которой задается экспоненциальная функция, а также перечислим ее основные свойства.
- Определение и формула экспоненты
- График экспоненты
- Свойства экспоненциальной функции
Определение и формула экспоненты
Экспонента – это показательная функция, формула которой выглядит следующим образом:
Экспоненциальная функция (так часто называют экспоненту) может быть определена:
Через предел (lim):
Через степенной ряд Тейлора:
График экспоненты
Ниже представлен график экспоненциальной функции
Как мы видим график (синяя линия) является выпуклым, строго возрастающим, т.е. при увеличении x увеличивается значение y .
Асимптотой является ось абсцисс, т.е. график во II четверти координатной плоскости стремится к оси Ox , но никогда не пересечет и не коснется ее.
Пересечение с осью ординат Oy – в точке , так как
Касательная (зеленая линия) к экспоненте проходит под углом 45 градусов в точке касания.
Функция EXP (экспонента) в Microsoft Excel
Одной из самых известных показательных функций в математике является экспонента. Она представляет собой число Эйлера, возведенное в указанную степень. В Экселе существует отдельный оператор, позволяющий её вычислить. Давайте разберемся, как его можно использовать на практике.
Вычисление экспоненты в Эксель
Экспонента является числом Эйлера, возведенным в заданную степень. Само число Эйлера приблизительно равно 2,718281828. Иногда его именуют также числом Непера. Функция экспоненты выглядит следующим образом:
где e – это число Эйлера, а n – степень возведения.
Для вычисления данного показателя в Экселе применяется отдельный оператор – EXP. Кроме того, эту функцию можно отобразить в виде графика. О работе с этими инструментами мы и поговорим далее.
Способ 1: вычисление экспоненты при помощи ручного ввода функции
Для того чтобы рассчитать в Экселе величину экспоненты для значения e в указанной степени, нужно воспользоваться специальным оператором EXP. Его синтаксис является следующим:
То есть, эта формула содержит только один аргумент. Он как раз и представляет собой степень, в которую нужно возвести число Эйлера. Этот аргумент может быть как в виде числового значения, так и принимать вид ссылки на ячейку, содержащую в себе указатель степени.
-
Таким образом для того, чтобы рассчитать экспоненту для третьей степени, нам достаточно ввести в строку формул или в любую незаполненную ячейку на листе следующее выражение:
Способ 2: использование Мастера функций
Хотя синтаксис расчета экспоненты предельно прост, некоторые пользователи предпочитают применять Мастер функций. Рассмотрим, как это делается на примере.
-
Устанавливаем курсор на ту ячейку, где должен будет выводиться итоговый результат расчета. Щелкаем по значку в виде пиктограммы «Вставить функцию» слева от строки формул.
Если в качестве аргумента используется ссылка на ячейку, которая содержит показатель степени, то нужно поставить курсор в поле «Число» и просто выделить ту ячейку на листе. Её координаты тут же отобразятся в поле. После этого для расчета результата щелкаем по кнопке «OK».
Способ 3: построение графика
Кроме того, в Экселе существует возможность построить график, взяв за основу результаты, полученные вследствие вычисления экспоненты. Для построения графика на листе должны уже иметься рассчитанные значения экспоненты различных степеней. Произвести их вычисление можно одним из способов, которые описаны выше.
-
Выделяем диапазон, в котором представлены экспоненты. Переходим во вкладку «Вставка». На ленте в группе настроек «Диаграммы» нажимаем на кнопку «График». Открывается список графиков. Выбирайте тот тип, который считаете более подходящим для выполнения конкретных задач.
Как видим, рассчитать экспоненту в Экселе при помощи функции EXP элементарно просто. Эту процедуру легко произвести как в ручном режиме, так и посредством Мастера функций. Кроме того, программа предоставляет инструменты для построения графика на основе этих расчетов.
Мы рады, что смогли помочь Вам в решении проблемы.
Помимо этой статьи, на сайте еще 12692 инструкций.
Добавьте сайт Lumpics.ru в закладки (CTRL+D) и мы точно еще пригодимся вам.
Отблагодарите автора, поделитесь статьей в социальных сетях.
Опишите, что у вас не получилось. Наши специалисты постараются ответить максимально быстро.
Экспонента, е в степени х
Число e определяется через предел последовательности. Это, так называемый, второй замечательный предел:
.
Также число e можно представить в виде ряда:
.
График экспоненты
График экспоненты, y = e x .
На графике представлена экспонента, е в степени х.
y ( x ) = е х
На графике видно, что экспонента монотонно возрастает.
Формулы
Основные формулы такие же, как и для показательной функции с основанием степени е .
Выражение показательной функции с произвольным основанием степени a через экспоненту:
.
Частные значения
Пусть y ( x ) = e x . Тогда
.
Свойства экспоненты
Экспонента обладает свойствами показательной функции с основанием степени е > 1 .
Область определения, множество значений
Экспонента y ( x ) = e x определена для всех x .
Ее область определения:
– ∞ < x + ∞ .
Ее множество значений:
0 < y < + ∞ .
Экстремумы, возрастание, убывание
Экспонента является монотонно возрастающей функцией, поэтому экстремумов не имеет. Основные ее свойства представлены в таблице.
y = е х | |
Область определения | – ∞ < x < + ∞ |
Область значений | 0 < y < + ∞ |
Монотонность | монотонно возрастает |
Нули, y = 0 | нет |
Точки пересечения с осью ординат, x = 0 | y = 1 |
+ ∞ | |
0 |
Обратная функция
Производная экспоненты
Производная е в степени х равна е в степени х:
.
Производная n-го порядка:
.
Вывод формул > > >
Интеграл
Комплексные числа
Действия с комплексными числами осуществляются при помощи формулы Эйлера:
,
где есть мнимая единица:
.
Выражения через гиперболические функции
Выражения через тригонометрические функции
Разложение в степенной ряд
Использованная литература:
И.Н. Бронштейн, К.А. Семендяев, Справочник по математике для инженеров и учащихся втузов, «Лань», 2009.
Экспонента: определение, формула, свойства, график
В данной публикации мы рассмотрим, что такое экспонента, как выглядит ее график, приведем формулу, с помощью которой задается экспоненциальная функция, а также перечислим ее основные свойства.
- Определение и формула экспоненты
- График экспоненты
- Свойства экспоненциальной функции
Определение и формула экспоненты
Экспонента – это показательная функция, формула которой выглядит следующим образом:
Экспоненциальная функция (так часто называют экспоненту) может быть определена:
Через предел (lim):
Через степенной ряд Тейлора:
График экспоненты
Ниже представлен график экспоненциальной функции
Как мы видим график (синяя линия) является выпуклым, строго возрастающим, т.е. при увеличении x увеличивается значение y .
Асимптотой является ось абсцисс, т.е. график во II четверти координатной плоскости стремится к оси Ox , но никогда не пересечет и не коснется ее.
Пересечение с осью ординат Oy – в точке , так как
Касательная (зеленая линия) к экспоненте проходит под углом 45 градусов в точке касания.
Показательная функция, её график и свойства с примерами решения
Рассмотрим выражение
Определение:
Показательной функцией называется функция вида где а — постоянная,
Область определения показательной функции — это естественная область определения выражения т. е. множество всех действительных чисел.
Свойства, указанные в этой теореме, мы примем без доказательства.
Изображение графика показательной функции позволяет наглядно представить эти свойства.
Множество (область) значений показательной функции — это проекция ее графика на ось Оу, а на рисунках 27 и 30 видно, что эта проекция есть интервал на оси Оу. Это значит, что для любой точки
принадлежащей этому интервалу, найдется такая точка
на оси Ох, что
(свойство 2).
Множество (область) значений показательной функции — это интервал а в этом интервале нет ни наименьшего числа, ни наибольшего (свойство 3).
График показательной функции проходит через точку и лежит в верхней полуплоскости (свойства 4, 5, 6).
График показательной функции не симметричен относительно оси ординат, поэтому она не является четной; график показательной функции не симметричен относительно начала координат, поэтому она не является нечетной (свойство 7).
На рисунке 27 видно, что при а > 1 показательная функция возрастает, а на рисунке 30 видно, что при 0 0 всегда. 3)
Комментарий:
При всегда
поэтому уравнение
не имеет корней. Другие уравнения приведем к виду
и перейдем к равносильному уравнению
Пример №6
Решите уравнение:
Решение:
1) Данное уравнение равносильно уравнениям:
Ответ: 5.
2) Данное уравнение равносильно уравнениям:
Ответ: 1.
Комментарий:
В левой и правой частях данных уравнений стоят только произведения, частные, корни или степени.
В этом случае для приведения уравнения к виду попробуем применить основные формулы действий над степенями, чтобы записать обе части уравнения как степени с одинаковыми основаниями.
В уравнении 1 следует обратить внимание на то, что а
и
таким образом, левую и правую части этого уравнения можно записать как степени числа 5.
Для преобразования уравнения 2 напомним, что все формулы можно применять как слева направо, так и справа налево. Например, для левой части этого уравнения воспользуемся формулой и запишем
Пример №7
Решите уравнение
Решение:
Данное уравнение равносильно уравнениям:
Ответ: 1
Комментарий:
В левой части уравнения все члены содержат выражения вида (показатели степеней отличаются только свободными членами). В этом случае в левой части уравнения удобно вынести за скобки наименьшую степень числа 3, то есть
Пример №8
Решите уравнение
Решение:
ОДЗ: любое
Рассмотрим два случая. 1) При
получаем уравнение
корни которого — все действительные числа из ОДЗ, то есть
2) При
значение
поэтому данное уравнение равносильно уравнению
Отсюда
тогда
Ответ: 1) при 2) при
Комментарий:
Это уравнение относительно переменной содержит параметр
Анализируя основания степеней в уравнении, делаем вывод, что при любых значениях
основание
Функция
при
— возрастающая, а при
— постоянная (см. графики функции
). Основание
при
а при всех других значениях
основание
Рассмотрим каждый из этих случаев отдельно:
Решение более сложных показательных уравнений и их систем
Схема поиска плана решения показательных уравнений
1. Избавляемся от числовых слагаемых в показателях степеней (используя справа налево основные формулы действий над степенями» приведенные в табл. 53).
Учитывая, что приводим все степени к одному основанию 2:
2. Если возможно, приводим все степени (с переменной в показателе) к одному основанию и выполняем замену переменной.
Замена дает уравнение
Обратная замена дает
тогда
или
— корней нет. Ответ: 1.
3. Если нельзя привести к одному основанию, то пытаемся привести все степени к двум основаниям так, чтобы получить однородное уравнение (которое решается делением обеих частей уравнения на наибольшую степень одного из видов переменных).
Приведем все степени к основаниям 2 и 3: Имеем однородное уравнение (у всех членов одинаковая суммарная степень —
). Для его решения разделим обе части на
Замена
дает уравнение
Обратная замена дает уравнения:
— корней нет или
тогда
Ответ: 0.
4. В других случаях переносим все члены уравнения в одну сторону и пробуем разложить полученное выражение на множители или применяем специальные приемы решения, в которых используются свойства соответствующих функций
Если попарно сгруппировать члены в левой части уравнения и в каждой паре вынести за скобки общий множитель, то получаем Теперь можно вынести за скобки общий множитель
Отсюда
или
Получаем два уравнения: 1)
тогда
2)
тогда
Ответ: 2; 1.
Объяснение и обоснование:
Для решения более сложных показательных уравнений (в сравнении с теми, которые были рассмотрены в п. 14.1) чаще всего используют замену переменных. Чтобы сориентироваться, можно ли ввести замену переменных в данном показательном уравнении, часто бывает полезно в начале решения избавиться от числовых слагаемых в показателях степеней. используя формулы:
Например, в уравнении
вместо записываем произведение
и получаем уравнение
Затем пробуем все степени (с переменной в показателе) привести к одному основанию и выполнить замену переменной. Например, в уравнении (2) степень с основанием 4 можно записать как степень с основанием 2: получить уравнение
Напомним общий ориентир: если в уравнение, неравенство или тождество переменная входит в одном и том же виде, то удобно соответствующее выражение с переменной обозначить одной буквой (новой переменной). Обращаем внимание на то, что Таким образом, в уравнение (3) переменная входит фактически в одном виде —
поэтому удобно ввести замену
Получаем квадратное уравнение
для которого находим корни, а затем выполняем обратную замену. Отметим, что как использование основных формул действий над степенями, так и использование замены и обратной замены всегда приводит к уравнению, равносильному данному на его ОДЗ (в уравнении (1) — на множестве всех действительных чисел). Это обусловлено тем, что все указанные преобразования мы можем выполнить и в прямом, и в обратном направлениях. (Таким образом, мы всегда сможем доказать, что каждый корень первого уравнения является корнем второго, и наоборот, аналогично тому, как был обоснован равносильный переход для простейших показательных уравнений).
В тех случаях, когда все степени (с переменной в показателе) в показательном уравнении, которое не приводится непосредственно к простейшему, не удается привести к одному основанию, следует попытаться привести все степени к двум основаниям так, чтобы получить однородное уравнение. Например, рассмотрим уравнение
Все степени в этом уравнении можно записать через основания 2 и 3, поскольку
Все одночлены, стоящие в левой части этого уравнения, имеют степень (степень одночлена
также равна
). Напомним ориентир:
Если все члены, уравнения, в левой и правой частях которого стоят многочлены от двух переменных (и ли от двух функций одной переменной), имеют одинаковую суммарную степень*, то уравнение называется однородным.
Решается однородное уравнение делением обеих его частей на наибольшую степень одной из переменных.
Следовательно, уравнение (6) является однородным и его можно решить делением обеих частей или на или на
Отметим, что при всех значениях
выражения
и
не равны нулю. Таким образом, при делении на эти выражения не может произойти потери корней (как это могло быть, например, для однородных тригонометрических уравнений). В результате деления обеих частей уравнения на любое из этих выражений всегда получается уравнение, равносильное данному. Например, если разделить обе части уравнения (6) на
получаем
или после сокращения
В последнем уравнении все члены можно представить как степени с одним основанием
и выполнить замену
Далее решение полученного уравнения полностью аналогично решению уравнения (2). Полное решение этого уравнения приведено в табл. 19.
Составляя план решения показательного уравнения, необходимо учитывать, что при решении некоторых из них целесообразно перенести все члены уравнения в одну сторону и попытаться разложить полученное выражение на множители, например, с использованием группировки членов, как это сделано в табл. 19 для уравнения
Для решения некоторых показательных уравнений можно применить свойства соответствующих функций.
Примеры решения задач:
Пример №9
Решите уравнение
Решение:
Замена Получаем
Тогда
Отсюда
Обратная замена дает уравнения: — корней нет или
тогда
Ответ: 1.
Комментарий:
В данное уравнение переменная входит только в одном виде поэтому удобно ввести замену
и, получив дробное уравнение, найти его корни, а затем выполнить обратную замену.
Как уже отмечалось, замена и обратная замена — это равносильные преобразования данного уравнения, но при решении полученного дробного уравнения следует позаботиться о том, чтобы не получить посторонних корней (для этого, например, достаточно учесть, что и поэтому ОДЗ полученного уравнения:
будет учтена автоматически).
*Конечно, если уравнение имеет вид (где
— многочлен), то речь идет только о степени членов многочлена
, поскольку нуль-многочлен степени не имеет.
Пример №10
Решите уравнение
Решение:
Замена
дает уравнение
Обратная замена дает
тогда
или
— корней нет. 5 Ответ: 0.
Комментарий:
- 1. Избавляемся от числовых слагаемых в показателях степеней.
- 2. Приводим все степени (с переменной в показателе) к одному основанию 5.
- 3. Выполняем замену
решаем полученное уравнение, производим обратную замену и решаем полученные простейшие показательные уравнения (а также учитываем, что все преобразования были равносильными).
Пример №11
Решите уравнение
Решение:
Ответ: 2.
Комментарий:
- 1. Избавляемся от числовых слагаемых в показателях степеней, переносим все члены уравнения в одну сторону и приводим подобные члены.
- 2. Замечаем, что степени всех членов полученного уравнения
(с основаниями 2 и 3) одинаковые —
следовательно, это уравнение однородное. Его можно решить делением обеих частей на наибольшую степень одного из видов выражений с переменной — или на
или на
Учитывая, что
при всех значениях
в результате деления на
получаем уравнение, равносильное предыдущему (а значит, и данному).
При решении систем уравнений, содержащих показательные функции, чаще всего используются традиционные методы решения систем уравнений: метод подстановки и метод замены переменных.
Пример №12
Решите систему уравнений
Решение:
Из первого уравнения системы Тогда из второго уравнения получаем
то есть
Замена
дает уравнение
из которого получаем уравнение
имеющее корни:
Обратная замена дает
тогда
или
откуда
Находим соответствующие значения
если
если
Ответ:
Комментарий:
Если из первого уравнения выразить через
и подставить во второе уравнение, то получим показательное уравнение, которое мы умеем решать (аналогично решению задачи 2). Выполняя замену, учитываем, что
Тогда в полученном дробном уравнении
знаменатель
Таким образом, это дробное уравнение равносильно уравнению
Пример №13
Решите систему уравнений
Решение:
Замена и
дает систему уравнений и
Из второго уравнения этой системы имеем
Далее из первого уравнения получаем
Отсюда
тогда
Обратная замена дает уравнения:
тогда
отсюда
тогда
отсюда
Ответ: (2; 2).
Комментарий:
Если обозначить и
то
Тогда данная система будет равносильна алгебраической системе, которую легко решить.
Решение показательных неравенств
1. График показательной функции
2. Схема равносильных преобразований простейших показательных неравенств
— знак неравенства сохраняется
— знак неравенства меняется на противоположный
Примеры:
Функция
является возрастающей, следовательно:
Ответ:
Функция
убывающая, следовательно:
Ответ:
3. Решение более сложных показательных неравенств
I. С помощью равносильных преобразований (по схеме решения показательны х уравнений) данное неравенство приводится к неравенству известного вида (квадратному, дробному и др.).
После решения полученного неравенства приходим к простейшим показательным неравенствам.
Замена дает неравенство
решения которого
или
(см. рисунок).
Обратная замена дает
(ре шений нет) или
откуда
то есть
Ответ:
II. Применяем метод интервалов, приводя данное неравенство к виду и используя схему:
- Найти ОДЗ.
- Найти нули
- Отметить пули функции на ОДЗ и найти знак
в каждом из промежутков, на которые разбивается ОДЗ. 4. Записать ответ, учитывая знак неравенства.
Пример:
Решим неравенство методом интервалов. Данное неравенство равносильно неравенству
Обозначим
- ОДЗ:
- Нули функции:
- Поскольку функция
является возрастающей (как сумма двух возрастающих функций), то значение, равное нулю, она принимает только в одной точке области определения:
- Отмечаем нули функции на ОДЗ, находим знак
в каждом из промежутков, на которые разбивается ОДЗ, и записываем решение неравенства
Ответ:
Объяснение и обоснование:
Решение простейших показательных неравенств вида (или
где
и
) основывается на свойствах функции
которая возрастает при
и убывает при
Например, чтобы найти решение неравенства
при
достаточно представить
в виде
Получаем неравенство
(1)
При функция
возрастает, следовательно, большему значению функции соответствует большее значение аргумента, поэтому из неравенства (1) получаем
(знак этого неравенства совпадает со знаком неравенства(1)). При
функция
убывает, следовательно, большему значению функции соответствует меньшее значение аргумента, поэтому из неравенства (1) получаем
(знак этого неравенства противоположен знаку неравенства (1)).
Графически это проиллюстрировано на рис. 14.3.
Например, чтобы решить неравенство достаточно представить это неравенство в виде
учесть, что
(функция
возрастающая, следовательно, при переходе к аргументам знак неравенства не меняется), и записать решение:
Решение данного неравенства можно записывать в виде или в виде промежутка
Аналогично, чтобы решить неравенство достаточно представить это неравенство в виде
учесть, что
(функция
убывающая, таким образом, при переходе к аргументам знак неравенства меняется на противоположный), и записать решение:
Учитывая, что при любых положительных значениях значение
всегда больше нуля, получаем, что при
неравенство
решений не имеет, а неравенство
выполняется при всех действительных значениях
Например, неравенство не имеет решений, а решениями неравенства
являются все действительные числа.
Обобщая приведенные выше рассуждения относительно решения простейших показательных неравенств, отметим, что при неравенство
равносильно неравенству
а при О 0,
функция
называется показательной функцией.
1) Область определения показательной функции все действительные числа.
2) Множество значений показательной функции все положительные
числа.
3) Так как = 1(при х = 0), то показательная функция пересекает ось у в точке (0; 1).
4) При а > 1 функция возрастающая, при
функция
убывающая.
5) Показательная функция не пересекает ось абсцисс и её график расположен выше оси х, т.е. в верхней полуплоскости.
Функция и её график называется экспонентой.
Экспонента при изменении аргумента увеличивается или уменьшается с большой скоростью.
6) При , если х бесконечно возрастают, соответствующие значения у бесконечно убывают и точки графика функции
неограниченно стремятся к оси абсцисс. При
точки на графике неограниченно стремятся к оси абсцисс.
Экспоненциально возрастающая и экспоненциально убывающие функции
Функция
также называется экспоненциальной функцией.
Например: функцию можно записать в виде
Пример:
По графику функции зададим её уравнение.
Решение:
Составим таблицу значений.
Из таблицы значений видно, что при увеличении значений х на 1 единицу, значения у уменьшаются в .
Значит, .Тогда формула функции будет:
Пример:
При каких значениях переменных справедливо следующие:
а)равенство ; б) неравенство
; в) неравенство
?
Решение:
а) запишем равенство в виде
. Здесь по свойству степени с действительным показателем х = 3.
б)запишем неравенство в виде
. Здесь ясно, что
.
в)запишем неравенство в виде
(в виде степени с одинаковым основанием), степени с основанием меньше 1. Получим, что
.
Преобразование графиков показательных функций
Общий вид показательной функции . Функция вида
является основной функцией в семействе показательных функций. Выполняя различные преобразования можно построить графики следующих функций
.
•График в раз растягивается от оси х.
Например.
•При происходит отражение относительно оси х.
Например. График функции
можно построить при помощи графика функции
используя параллельный перенос.
Пример №18
Построим график функции при помощи параллельного переноса графика функции
. 1.Для функции
отметим точки (0; 3), (1; 6); (2; 12) и соединим эти точки гладкой линией. Прямая у = 0 является асимптотой 2.График функции
перенесём параллельно на одну единицу влево
и на одну единицу вверх
(на вектор (-1; 1)), найдём новые координаты указанных точек и расположим их на координатной плоскости. Соединим эти точки гладкой линией и получим график функции
.
Прямая у = 1 является горизонтальной асимптотой.
В реальной жизни, при ежегодном увеличении величины на постоянный процент, её состояние через лет можно оценить формулой
, при уменьшении — формулой
.Здесь а — начальное количество,
— процент увеличения (уменьшения) ( десятичная дробь),
-количество лет.
При помощи данных формул решим следующее задание.
Пример №19
Цена автомобиля купленного за 24 ООО руб ежегодно снижается на 12%. Запишем зависимость между количеством лет эксплуатации автомобиля и его ценой.
Решение.
В формулепримем а = 24000,
= 12% = 0,12, 1 —
= 0,88.
Тогда данную ситуацию можно смоделировать показательной
функцией .
Показательная функция. Число е.
Исследование:
Представьте, что вы вложили в банк 1 руб, под сложные проценты с процентной ставкой равной 100%. В течении года вы произвели вычислений раз, подставив в формулу сложного процентного роста следующие данные
.
Вычислите значения функции и установите, к какому числу приближается значение функции при различных значениях
.
Как видно, если банк будет чаще вычислять процент для вложенной суммы, то прибыль увеличится. Однако, отношение ежедневных вычислений к ежемесячным даёт прибыль 10 гяпик. Если даже банк будет находить процент для денег на счету ежесекундно , то и в данном случае разница между начислением процентов ежечасно или ежедневно будет незначительна. Из графика функции построенного при помощи графкалькулятора видно, что при
функция
имеет горизонтальную асимптоту.
Число е:
Исследование показывает, что при увеличении значений значение выражения
колеблется между 2,71 и 2,72. Это число записывается буквой е и имеет значение е = 2,718 281 828 459. .
Число е, так же как и число является иррациональным числом. Эти числа называются трансцендентными числами. Трансцендентным называется число, которое не является корнем уравнения
степени с целыми коэффициентами. Экспоненциальное возрастание или убывание по основанию е задаётся формулой
. Здесь No-начальное значение, t -время,
-постоянное число.
График функции y=e x
График функции .
Для построения графика функции можно использовать различные граф калькуляторы. Например, (http://www.meta-calculator.com/onlinc) или как показано на рисунке, при помощи программы Geometer’s Sketchpad®.
Показательная и логарифмическая функции их свойства и график
Понятие показательной функции и ее график:
Определение. Показательной функцией называется функция вида
График показательной функции (экспонента)
1. Область определения:
2. Область значений:
3. Функция ни четная, ни нечетная.
4. Точки пересечения с осями координат:
с осью
5. Промежутки возрастания и убывания:
функция при
возрастает на всей области определения
функция при
убывает на всей области определения
6. Промежутки знакопостоянства:
7.
8. Для любых действительных значений выполняются равенства:
Понятие показательной функции
Показательной функцией называется функция вида
Например, показательная функция
Отметим, что функция вида существует и при
Тогда при всех значениях
Но в этом случае функция
не называется показательной. (График функции
— прямая, изображенная на рис. 118.)
Поскольку при выражение
определено при всех действительных значениях
то областью определения показательной функции
являются все действительные числа.
Попытаемся сначала построить графики некоторых показательных функций, например «по точкам», а затем перейдем к характеристике общих свойств показательной функции.
Составим таблицу некоторых значений функции
Построим на координатной плоскости соответствующие точки (рис. 119, а) и соединим эти точки плавной линией, которую естественно считать графиком функции (рис. 119,6).
Как видим из графика, функция является возрастающей функцией, которая принимает все значения на промежутке
Аналогично составим таблицу некоторых значений функции
Построим на координатной плоскости соответствующие точки (рис. 120, а) и соединим эти точки плавной линией, которую естественно считать графиком функции (рис. 120, б).
Как видим из графика, функция является убывающей функцией, которая принимает все значения на промежутке. Заметим, что график функции
можно получить из графика функции
с помощью геометрических преобразований. Действительно,
Таким образом, график функции симметричен графику функции
относительно оси
(табл. 4, с. 28), и поэтому, если функция
является возрастающей, функция
обязательно будет убывающей.
Оказывается, что всегда при график функции
похож на график функции
— на график функции
(рис. 121). График показательной функции называется экспонентой.
Свойства показательной функции
Как было обосновано выше, областью определения показательной функции являются все действительные числа:
Областью значений функции является множество всех положительных чисел, то есть функция
принимает только положительные значения, причем любое положительное число является значением функции, то есть
Это означает, что график показательной функции всегда расположен выше оси
и любая прямая, которая параллельна оси
и находится выше нее, пересекает этот график.
При функция
возрастает на всей области определения,
при
функция
убывает на всей области определения.
Обоснование области значений и промежутков возрастания и убывания показательной функции проводится так: эти свойства проверяются последовательно для натуральных, целых, рациональных показателей, а затем уже переносятся на любые действительные показатели.
Следует учесть, что при введении понятия степени с иррациональным показателем мы уже пользовались возрастанием функции, когда проводили такие рассуждения: поскольку Таким образом, в нашей системе изложения материала мы можем обосновать эти свойства только для рациональных показателей, но, учитывая громоздкость таких обоснований, примем их без доказательства. Все остальные свойства показательной функции легко обосновываются с помощью этих свойств.
Функция не является ни четной, ни нечетной, поскольку
(по определению
Также
поскольку
(по свойству 1), а
Точки пересечения с осями координат. График функции пересекает ось
в точке
Действительно, на оси
значение
тогда
График показательной функции не пересекает ось
поскольку на оси
но значение
не принадлежит области значений показательной функции
только при
но по определению
Промежутки знакопостоянства. при всех действительных значениях
поскольку
Отметим еще одно свойство показательной функции. Поскольку график функции пересекает ось
в точке
то, учитывая возрастание функции при
и убывание при
получаем следующие соотношения между значениями функции и соответствующими значениями аргумента:
Функция не имеет ни наибольшего, ни наименьшего значений, поскольку ее область значений — промежуток
который не содержит ни наименьшего, ни наибольшего числа.
Свойства показательной функции, приведенные в пункте 8 таблицы 49:
были обоснованы в разделе 3.
Отметим еще одно свойство показательной функции, которое выделяет ее из ряда других функций: если то при любых действительных значениях аргументов
выполняется равенство
Действительно, В курсах высшей математики это свойство (вместе со строгой монотонностью) является основой аксиоматического определения показательной функции. В этом случае дается определение, что показательная функция
— это строго монотонная функция, определенная на всей числовой оси, которая удовлетворяет функциональному уравнению
а затем обосновывается, что функция
совпадает с функцией
Кроме общих свойств показательной функции при отметим некоторые особенности поведения графиков показательных функций при конкретных значениях
Так, на рисунке 122 приведены графики показательных функций
при значениях основания
Сравнивая эти графики, можно сделать вывод: чем больше основание тем круче поднимается график функции
при движении точки вправо и тем быстрее график приближается к оси
при движении точки влево. Аналогично, чем меньше основание
тем круче поднимается график функции
при движении точки влево и тем быстрее график приближается к оси
при движении точки вправо.
Заканчивая разговор о показательной функции, укажем те причины, которые мешают рассматривать показательные функции с отрицательным или нулевым основанием.
Отметим, что выражение можно рассматривать и при
и при
Но в этих случаях оно уже будет определено не при всех действительных значениях
как показательная функция
В частности, выражение
определено при всех
(и тогда
а выражение
— при всех целых значениях ( например
По этой причине не берут основание показательной функции
(получаем постоянную функцию при
и
(получаем функцию, определенную только при достаточно «редких» значениях
Приведенные рассуждения относительно целесообразности выбора основания показательной функции не влияют на область допустимых значений выражения
(например, как мы видели выше, пара значений
принадлежит его ОДЗ, и это приходится учитывать при решении некоторых задач).
Примеры решения задач:
Пример №20
Сравните значения выражений:
Решение:
1) Функция является убывающей
поэтому из неравенства
получаем
2) Функция является возрастающей поэтому из неравенства
получаем
Учтем, что функция является возрастающей, а при
— убывающей. Поэтому сначала сравним данное основание
с единицей, а затем, сравнивая аргументы, сделаем вывод о соотношении между данными значениями функции.
Пример №21
Сравните с единицей положительное основание а, если известно, что выполняется неравенство:
Решение:
1) Поскольку и по условию
то функция
является убывающей, следовательно,
2) Поскольку и по условию
то функция
является возрастающей, следовательно,
В каждом задании данные выражения — это два значения функции
Проанализируем, какое значение функции соответствует большему значению аргумента (для этого сначала сравним аргументы).
Если большему значению аргумента соответствует большее значение функции, то функция является возрастающей и
Если большему значению аргумента соответствует меньшее значение функции, то функция
является убывающей, и тогда
Пример №22
Постройте график функции:
При значение
следовательно, график функции
всегда расположен выше оси
Этот график пересекает ось
в точке
При показательная функция
возрастает, следовательно, ее графиком будет кривая (экспонента), точки которой при увеличении аргумента поднимаются.
При показательная функция
убывает, следовательно, графиком функции
будет кривая, точки которой при увеличении аргумента опускаются. (Напомним, что, опускаясь вниз, график приближается к оси
но никогда ее не пересекает.)
Чтобы уточнить поведение графиков данных функций, найдем координаты нескольких дополнительных точек.
Решение:
Пример №23
Изобразите схематически график функции
Решение:
Последовательно строим графики:
Составим план построения графика данной функции с помощью последовательных геометрических преобразований (табл. 4 на с. 28). 1. Мы можем построить график функции основание
показательная функция убывает).
2. Затем можно построить график функции справа от оси
(и на самой оси) график функции
остается без изменений, и эта же часть графика отображается симметрично относительно оси
3. После этого можно построить график функции
параллельно перенести график вдоль оси
на (-3) единицы.
4. Затем можно построить график данной функции выше оси
(и на самой оси) график функции
должен остаться без изменений(но таких точек у графика функции
нет, а ниже оси
— график функции
необходимо отобразить симметрично относительно оси
Решение показательных уравнении и неравенств
Основные формулы и соотношения:
График функции
— возрастает
— убывает
— постоянная
Схема равносильных преобразований простейших показательных уравнений:
При
Пример №24
Корней нет (поскольку для всех
Ответ: корней нет.
Приведение некоторых показательных уравнений к простейшим:
1) Если в левой и правой частях показательного уравнения стоят только произведения, частные, корни или степени, то целесообразно с помощью основных формул попробовать записать обе части уравнения как степени с одним основанием.
Пример №25
Ответ:
2) Если в одной части показательного уравнения стоит число, а в другой все члены содержат выражение вида (показатели степеней отличаются только свободными членами), то удобно в этой части уравнения вынести за скобки наименьшую степень
Пример №26
Объяснение и обоснование:
Показательными уравнениями обычно называют уравнения, в которых переменная входит в показатель степени (а основание этой степени не содержит переменной).
Простейшие показательные уравнения
Рассмотрим простейшее показательное уравнение вида
где
Поскольку при этих значениях
функция
строго монотонна (возрастает при
и убывает при
то каждое свое значение она принимает только при одном значении аргумента. Это означает, что уравнение
имеет единственный корень. Чтобы его найти, достаточно представить
Очевидно, что является корнем уравнения
Графически это проиллюстрировано на рисунке 123.
Например, чтобы решить уравнение достаточно представить это уравнение в виде
и записать его единственный корень
Если то уравнение
корней не имеет, поскольку
всегда больше нуля. (На графиках, приведенных на рисунке 124, прямая
не пересекает график функции
Например, уравнение не имеет корней.
Обобщая приведенные выше рассуждения относительно решения простейших показательных уравнений, отметим, что при уравнение вида
равносильно уравнению
Коротко это утверждение можно записать так: при
Чтобы обосновать равносильность этих уравнений, достаточно заметить, что равенства (2) и (3) могут быть верными только одновременно, поскольку функция является строго монотонной и каждое свое значение принимает только при одном значении аргумента (
то есть из равенства степеней (2) обязательно вытекает равенство показателей (3)). Таким образом, все корни уравнения (2) (которые обращают это уравнение в верное равенство) будут корнями и уравнения (3), и наоборот, все корни уравнения (3) будут корнями уравнения (2). А это и означает, что уравнения (2) и(3) равносильны.
В простейших случаях при решении показательных уравнений пытаются с помощью основных формул действий над степенями (см. таблицу 46) привести (если это возможно) данное уравнение к виду
Для решения более сложных показательных уравнений чаще всего используют замену переменных (применение этого метода рассмотрено в табл. 51, с. 344) или свойства соответствующих функций (применение этих методов рассмотрено в табл. 58, с. 403).
Заметим, что все равносильные преобразования уравнения всегда выполняются на его области допустимых значений (то есть на общей области определения для всех функций, входящих в запись этого уравнения). Но в показательных уравнениях чаще всего областью допустимых значений (ОДЗ) является множество всех действительных чисел. В этих случаях, как правило, ОДЗ явно не находят и не записывают в решении уравнения (см. ниже задачи 1-3). Но если в ходе решения показательных уравнений равносильные преобразования выполняются не на всем множестве действительных чисел, то в этом случае приходится вспоминать об ОДЗ (задача 4″ на с. 343).
Примеры решения задач:
Пример №27
Решение:
1)
2) — корней нет, поскольку
всегда;
3)
При всегда
поэтому уравнение
не имеет корней.
Другие уравнения приведем к виду и перейдем к равносильному уравнению
Пример №28
Решение:
1) Данное уравнение равносильно уравнениям:
2) Данное уравнение равносильно уравнениям:
В левой и правой частях данных уравнений стоят только произведения, частные, корни или степени. В этом случае для приведения уравнения к виду попробуем применить основные формулы действий над степенями, чтобы записать обе части уравнения как степени с одним основанием.
В уравнении 1 следует обратить внимание на то, что а
таким образом, левую и правую части этого уравнения можно записать как степени числа 5.
Для преобразования уравнения 2 напомним, что все формулы можно применять как слева направо, так и справа налево, например для левой части этого уравнения воспользуемся формулой то есть запишем
Пример №29
Решите уравнение
Решение:
Данное уравнение равносильно уравнениям:
В левой части уравнения все члены содержат выражения вида (показатели степеней отличаются только свободными членами). В этом случае в левой части уравнения удобно вынести за скобки наименьшую степень числа 3, то есть
Пример №30
Решите уравнение
Решение:
► ОДЗ:
Рассмотрим два случая.
1) При получаем уравнение
корни которого — все действительные числа из ОДЗ, то есть
2) При значение
и тогда данное уравнение равносильно уравнению
Отсюда
Ответ: 1) при
2) при
Это уравнение относительно переменной которое содержит параметр
Анализируя основания степеней в уравнении, делаем вывод, что при любых значениях
основание
Функция
является возрастающей, а при
— постоянной (см. графики функции
в табл. 50).
Основание а при всех других значениях
основание
Рассмотрим каждый из этих случаев отдельно, то есть:
Решение более сложных показательных уравнений и их систем
Схема поиска плана решения показательных уравнений:
- Избавляемся от числовых слагаемых в показателях степеней (используя справа налево основные формулы действий над степенями, приведенные в табл. 50).
- Если возможно, приводим все степени (с переменной в показателе) к одному основаниюи выполняем замену переменной.
Учитывая, что приводим все степени к одному основанию 2:
Замена
дает уравнение
Обратная замена дает тогда
корней нет.
3. Если нельзя привести к одному основанию, то пытаемся привести все степени к двум основаниям так, чтобы получить однородное уравнение (которое решается делением обеих частей уравнения на наибольшую степень одного из видов переменных).
Приведем все степени к двум основаниям 2 и 3:
Имеем однородное уравнение (у всех членов одинаковая суммарная степень — Для его решения разделим обе части на
Замена дает уравнение
Обратная замена дает
— корней нет или
тогда
Ответ: 0.
4. В других случаях переносим все члены уравнения в одну сторону и пробуем разложить полученное уравнение на множители или применяем специальные приемы решения, в которых используются свойства соответствующих функций.
Если попарно сгруппировать члены в левой части уравнения и в каждой паре вынести за скобки общий множитель, то получаем
Теперь можно вынести за скобки общий множитель
Тогда Получаем два уравнения:
Объяснение и обоснование:
Для решения более сложных показательных уравнений (в сравнении с теми, которые были рассмотрены в предыдущем пункте 30.1) чаще всего используют замену переменных. Чтобы сориентироваться, можно ли ввести замену переменных в данном показательном уравнении, часто бывает полезно в начале решения избавиться от числовых слагаемых в показателях степеней, используя формулы: Например, в уравнении
вместо
записываем произведение
и получаем уравнение
равносильное заданному.
Затем пробуем все степени (с переменной в показателе) привести к одному основанию и выполнить замену переменной. Например, в уравнении (2) степень с основанием 4 можно записать как степень с основанием и получить уравнение
Напомним общий ориентир: если в уравнение, неравенство или тождество переменная входит в одном и том же виде, то удобно соответствующее выражение с переменной обозначить одной буквой (новой переменной).
Обращаем внимание на то, что Таким образом, в уравнение (3) переменная входит фактически в одном виде —
поэтому в этом уравнении удобно ввести замену
Получаем квадратное уравнение
для которого находим корни, а затем выполняем обратную замену (см. решение в табл. 51).
Отметим, что как использование основных формул действий над степенями, так и использование замены и обратной замены всегда приводит к уравнению, равносильному данному на его ОДЗ (в уравнении (1) — на множестве всех действительных чисел). Это обусловлено тем, что все указанные преобразования мы можем выполнить и в прямом, и в обратном направлениях. (Таким образом, мы всегда сможем доказать, что каждый корень первого уравнения является корнем второго и наоборот, аналогично тому, как был обоснован равносильный переход для простейших показательных уравнений на с. 341).
В тех случаях, когда все степени (с переменной в показателе) в показательном уравнении, которое не приводится непосредственно к простейшему, не удается привести к одному основанию, следует попытаться привести все степени к двум основаниям так, чтобы получить однородное уравнение.
Например, рассмотрим уравнение
Все степени в этом уравнении можно записать через основания 2 и 3, поскольку
Получаем уравнение
Все одночлены, стоящие в левой части этого уравнения, имеют степень (степень одночлена
также равна
Напомним (см. раздел 2, с. 172):
Если все члены уравнения, в левой и правой частях которого стоят многочлены от двух переменных (или от двух функций одной переменной), имеют одинаковую суммарную степень, то уравнение называется однородным.
Решается однородное уравнение делением обеих его частей на наибольшую степень одной из переменных.
Следовательно, уравнение (6) является однородным, и его можно решить делением обеих частей или на или на
Отметим, что при всех значениях
выражения
не равны нулю. Таким образом, при делении на эти выражения не может произойти потери корней (как это могло быть, например, для однородных тригонометрических уравнений). В результате деления обеих частей уравнения на любое из этих выражений всегда получается уравнение, равносильное данному. Например, если разделить обе части уравнения (6) на
получаем
или после сокращения
В последнем уравнении все члены можно представить как степени с одним основанием и выполнить замену
Далее решение полученного уравнения полностью аналогично решению уравнения (2). Полное решение этого уравнения приведено в таблице 51.
Составляя план решения показательного уравнения, необходимо учитывать, что при решении некоторых из них целесобразно перенести все члены уравнения в одну сторону и попытаться разложить полученное выражение на множители, например, с использованием группировки членов, как это сделано в таблице 51 для уравнения
Для решения некоторых показательных уравнений можно применить свойства соответствующих функций.
Примеры решения задач:
Пример №31
Решите уравнение
Решение:
Замена Получаем
Тогда
Отсюда
Обратная замена дает
— корней нет или
тогда
В данное уравнение переменная входит только в одном виде и поэтому удобно ввести замену
и, получив дробное уравнение, найти его корни, а затем выполнить обратную замену.
Как уже отмечалось, замена и обратная замена — это равносильные преобразования данного уравнения, но при решении полученного дробного уравнения следует позаботиться о том, чтобы не получить посторонних корней (для этого, например, достаточно учесть, что и поэтому ОДЗ полученного уравнения:
будет учтена автоматически).
Пример №32
Решите уравнение
Решение:
Замена дает уравнение
Обратная замена дает тогда
корней нет
- Избавляемся от числовых слагаемых в показателях степеней.
- Приводим все степени (с переменной в показателе) к одному основанию 5.
- Выполняем замену
решаем полученное уравнение, производим обратную замену и решаем полученные простейшие показательные уравнения (а также учитываем, что все преобразования были равносильными).
Пример №33
Решите уравнение
Решение:
- Избавляемся от числовых слагаемых в показателях степеней,переносим все члены уравнения в одну сторону и приводим подобные члены.
- Замечаем, что степени всех членов полученного уравнения
(с двумя основаниями 2 и 3) одинаковые —
следовательно, это уравнение однородное. Его можно решить делением обеих частей на наибольшую степень одного из видов выражений с переменной — или на
или на
Учитывая, что
при всех значениях
в результате деления на
получаем уравнение, равносильное предыдущему (а значит, и заданному).
При решении систем уравнений, содержащих показательные функции, чаще всего используются традиционные методы решения систем уравнений: метод подстановки и метод замены переменных.
Пример №34
Решите систему уравнений
Решение:
Из первого уравнения системы
Тогда из второго уравнения получаем то есть
Замена
дает уравнение
из которого получаем уравнение
имеющее корни:
Обратная замена дает
тогда
откуда
Находим соответствующие значения
если
если
Ответ:
Если из первого уравнения выразить через
и подставить во второе уравнение, то получим показательное уравнение, которое мы умеем решать (аналогично решению задачи 2).
Выполняя замену, учитываем, что Тогда в полученном дробном уравнении
знаменатель
Таким образом, это дробное уравнение равносильно уравнению
Пример №35
Решите систему уравнений
Решение:
Замена и дает систему
Из второго уравнения этой системы имеем Тогда из первого уравнения получаем
Отсюда
Обратная замена дает
Ответ:
Если обозначить то
Тогда данная система будет равносильна алгебраической системе, которую легко решить.
После обратной замены получаем систему простейших показательных уравнений
Решение показательных неравенств
График показательной функции :
Схема равносильных преобразований простейших показательных неравенств:
знак неравенства сохраняется знак неравенства меняется на противоположный
Пример №36
. Функция
является возрастающей, следовательно:
Ответ:
Пример №37
Функция
убывающая, следовательно:
Ответ:
Решение более сложных показательных неравенств
I. С помощью равносильных преобразований (по схеме решения показательных уравнений, табл. 51) данное неравенство приводится к неравенству известного вида (квадратному, дробному и т. д.). После решения полученного неравенства приходим к простейшим показательным неравенствам.
Пример №38
Замена дает неравенство
решения которого
(см. рисунок).
Обратная замена дает (решений нет) или
откуда
Ответ:
II. Применяем общий метод интервалов, приводя данное неравенство к виду f (x)0 и используя схему:
1. Найти ОДЗ.
2. Найти нули
3. Отметить нули функции на ОДЗ и найти знак в каждом из промежутков, на которые разбивается ОДЗ.
4. Записать ответ, учитывая знак неравенства.
Решим неравенство методом интервалов. Данное неравенство равносильно неравенству Обозначим
1. ОДЗ:
2. Нули функции:
Поскольку функция является возрастающей (как сумма двух возрастающих функций), то значение, равное нулю, она принимает только в одной точке области определения:
3. Отмечаем нули функции на ОДЗ, находим знак в каждом из промежутков, на которые разбивается ОДЗ, и записываем решение неравенства
Ответ:
Объяснение и обоснование:
Решение простейших показательных неравенств вида где
основывается на свойствах функции
которая возрастает при
и убывает при
Например, чтобы найти решение неравенства
достаточно представить
в виде
Получаем неравенство
При функция
возрастает, следовательно, большему значению функции соответствует большее значение аргумента, поэтому из неравенства (1) получаем
(знак этого неравенства совпадает со знаком неравенства (1)).
При функция
убывает, следовательно, большему значению функции соответствует меньшее значение аргумента, поэтому из неравенства (1) получаем
(знак этого неравенства противоположен знаку неравенства (1)).
Графически это проиллюстрировано на рисунке 125.
Например, чтобы решить неравенство достаточно представить это неравенство в виде
учесть, что
(функция
является возрастающей, следовательно, при переходе к аргументам знак неравенства не меняется), и записать решение:
Заметим, что решение данного неравенства можно записывать в виде или в виде промежутка
Аналогично, чтобы решить неравенство Достаточно представить это неравенство в виде
Учесть
что (Функция
является убывающей, таким образом, при переходе к аргументам знак неравенства меняется на противоположный), и записать решение:
Учитывая, что при любых положительных значениях а значение всегда больше нуля, получаем, что при
неравенство
решений не имеет, а неравенство
выполняется при всех действительных значениях
Например, неравенство не имеет решений, а решениями неравенства являются все действительные числа.
Обобщая приведенные выше рассуждения относительно решения простейших показательных неравенств, отметим, что при неравенство
равносильно неравенству
а при
— неравенству
При (знак неравенства сохраняется).
При (знак неравенства меняется на противоположный).
Чтобы обосновать равносильность соответствующих неравенств, достаточно заметить, что при неравенства
могут быть верными только одновременно, поскольку функция
при
является возрастающей и большему значению функции соответствует большее значение аргумента (и наоборот: большему значению аргумента соответствует большее значение функции). Таким образом, все решения неравенства (2) (которые обращают его в верное числовое неравенство) будут и решениями неравенства (3), и наоборот: все решения неравенства (3) будут решениями неравенства (2). А это и означает, что неравенства (2) и (3) являются равносильными.
Аналогично обосновывается равносильность неравенств и
при
В простейших случаях при решении показательных неравенств, как и при решении показательных уравнений, пытаются с помощью основных формул действий над степенями привести (если это возможно) данное неравенство к виду
Для решения более сложных показательных неравенств чаще всего используют замену переменных или свойства соответствующих функций.
Заметим, что аналогично решению показательных уравнений все равносильные преобразования неравенства всегда выполняются на его области допустимых значений (то есть на общей области определения для всех функций, входящих в запись этого неравенства). Для показательных неравенств достаточно часто областью допустимых значений (ОДЗ) является множество всех действительных чисел. В этих случаях, как правило, ОДЗ явно не находят и не записывают в решение неравенства (см. далее задачу 1). Но если в процессе решения показательного неравенства равносильные преобразования выполняются не на всем множестве действительных чисел, то в этом случае приходится учитывать ОДЗ (см. далее задачу 2).
Примеры решения задач:
Пример №39
Решите неравенство
Решение:
Поскольку функция
является убывающей, то
Отсюда ( см.рисунок)
Ответ:
Запишем правую часть неравенства как степень числа Поскольку
то при переходе от степеней к показателям знак неравенства меняется на противоположный (получаем неравенство, равносильное данному).
Для решения полученного квадратного неравенства используем графическую иллюстрацию.
Пример №40
Решите неравенство
Решение:
ОДЗ:
Замена дает неравенство
равносильное неравенству
Поскольку
получаем
Отсюда
Учитывая, что
имеем
Выполняя обратную замену, получаем
Тогда
Функция является возрастающей, таким образом,
Учитывая ОДЗ, получаем
Ответ:
Поскольку равносильные преобразования неравенств выполняются на ОДЗ исходного неравенства, то зафиксируем эту ОДЗ. Используя формулу избавляемся от числового слагаемого в показателе степени и получаем степени с одним основанием 3, что позволяет ввести замену
В полученном неравенстве знаменатель положителен, поэтому это дробное неравенство можно привести к равносильному ему квадратному.
После выполнения обратной замены следует учесть не только возрастание функции но и ОДЗ исходного неравенства.
Пример №41
Решите неравенство
Решение:
Решим неравенство методом интервалов. Обозначим
1 ОДЗ:
2. Нули функции:
Замена Получаем
Обратная замена дает:
Отсюда Отметим нули функции на ОДЗ, находим знак
в каждом из полученных промежутков и записываем решения неравенства
Ответ:
Данное неравенство можно решать или приведением к алгебраическому неравенству, или методом интервалов. Для решения его методом интервалов используем схему, приведенную в таблице 52.
При нахождении нулей функции приведем все степени к двум основаниям (2 и 3), чтобы получить однородное уравнение. Это уравнение решается делением обеих частей на наивысшую степень одного из видов переменных — на Учитывая, что
при всех значениях
в результате деления на
получаем уравнение, равносильное предыдущему.
Разумеется, для решения данного неравенства можно было учесть, что всегда, и после деления данного неравенства на
и замены
получить алгебраическое неравенство.
Пример №42
Решите неравенство
Данное нестрогое неравенство также удобно решать методом интервалов. Записывая ответ, следует учитывать, что в случае, когда мы решаем нестрогое неравенство все нули функции
должны войти в ответ.
Решение:
Обозначим
1. ОДЗ: Тогда
(см. рисунок).
2. Нули функции:
Тогда
Из первого уравнения:
— не принадлежит ОДЗ, а из второго:
3. Отмечаем нули на ОДЗ, находим знак
в каждом из промежутков, на которые разбивается ОДЗ, и записываем решение неравенства
Ответ:
Показательные функции в высшей математике
Рассмотрим функцию, заданную равенством Составим таблицу её значений для нескольких значений аргумента:
На рисунке 19, а обозначены точки, координаты которых соответствуют этой таблице. Когда на этой же координатной плоскости обозначить больше точек с координатами удовлетворяющих равенству
они разместятся, как показано на рисунке 19, б. А если для каждого действительного значения
вычислить соответствующее значение
и обозначить на координатной плоскости точки с координатами
они разместятся на одной бесконечной кривой (рис. 19, в). Эта кривая — график функции
График функции размещён в I и II координатных четвертях. Когда
он как угодно близко подходит к оси
но общих точек с ней не имеет. Говорят, что график функции
асимптотически приближается к оси
что ось
— асимптота этого графика. Когда
неограниченно увеличивается, график функции
всё дальше отходит от оси
Как видим, функция
определена для всех действительных чисел, её область значений — промежуток
На всей области определения функция возрастает, она ни чётная, ни нечётная, ни периодическая.
Рассматриваемая функция — пример показательной функции, а именно — показательная функция с основанием 2.
Показательной функцией называется функция, заданная формулой
Примеры других показательных функций:
Их графики изображены на рисунке 20. Согласно определению функция
не является показательной.
Основные свойства показательной функции
- Область определения функции
— множество
ибо при каждом положительном
и действительном
выражение
определено.
- Область значений функции
— множество
поскольку, если основание
степени положительное, то положительная и степень
Следовательно, функция
принимает только положительные значения.
- Если
функция
возрастает, а если
— убывает. Это свойство хорошо видно на графиках функций (рис. 20).
- Функция
каждое своё значение принимает только один раз, т. е. прямую, параллельную оси
график показательной функции может пересечь только в одной точке. Это следует из свойства 3.
- Функция
ни чётная, ни нечётная, ни периодическая. Поскольку каждое своё значение она принимает только один раз, то не может быть чётной или периодической. Не может она быть и нечётной, так как не имеет ни отрицательных, ни нулевых значений.
- График каждой показательной функции проходит через точку
поскольку если
При решении задач и упражнений, связанных с показательной функцией, особенно часто используется третье свойство, в котором указывается на монотонность показательной функции, то есть её возрастание или убывание. В частности из него вытекают следующие утверждения.
- Если
- Если
- Если
Присмотритесь к графикам показательных функций и
(рис. 21). Угловой коэффициент касательной, проведённой в точке
к графику функции
меньше 1, а к графику функции
— больше 1. Существует ли такая показательная функция, у которой угловой коэффициент касательной к её графику в точке
равен 1? Существует (рис. 22).Основание этой показательной функции — иррациональное число 2,71828 . которое принято обозначать буквой
Показательная функция
в математике и многих прикладных науках встречается довольно часто, ее называют экспонентом (лат. exponens — выставлять напоказ).
К показательной функции иногда относят также функции вида При помощи таких функций описывают много разных процессов, связанных с физикой, химией, биологией, экономикой, социологией и т. д. Например, процессы новообразования и распада вещества можно описать с помощью формулы
Здесь
— количество вновь образованного (или распавшегося) вещества в момент времени
— начальное количество вещества,
— постоянная, значение которой определяется для конкретной ситуации. Подберите самостоятельно соответствующие примеры.
Пример №43
Сравните с единицей число:
Решение:
а) Представим число 1 в виде степени с основанием 0,5. Имеем: Поскольку функция
убывающая и
отсюда
функция возрастающая и
поэтому
отсюда
Пример №44
Функция задана на промежутке
Найдите её наименьшее и наибольшее значения.
Решение:
Поскольку то данная функция убывающая. Поэтому её наименьшее и наибольшее значения:
Пример №45
Постройте график функции
Решение:
Функция — чётная (проверьте). График чётной функции симметричен относительно оси
поэтому достаточно построить график заданной функции для
и отобразить его симметрично относительно оси
Если
Построим график функции
для
и отобразим его симметрично относительно оси
(рис. 23).
При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org
Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи
Сайт пишется, поддерживается и управляется коллективом преподавателей
Telegram и логотип telegram являются товарными знаками корпорации Telegram FZ-LLC.
Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.