Статьи. 31 Конвертация длин световых волн в RGB
Конвертация длин световой волны в значения системы RGB имеет следующий вид:
Пурпурный цвет 400-422 нм, 750-794 ТГц; RGB (255; 0; 255), угол цветового тона 300 град, название тона в RGB – цвет маджента;
Фиолетовый цвет 423-444 нм, 710-749 ТГц; RGB (127,5; 0; 255), угол цветового тона 270 град, название тона в RGB – фиолетово-сизый цвет;
Синий цвет 445-467 нм, 673-709 ТГц; RGB (0; 0; 255), угол цветового тона 240 град, название тона в RGB – синий цвет;
Лазурный (небесно-голубой) цвет 468- 490 нм, 641-672 ТГц; RGB (0; 127,5; 255), угол цветового тона 210 град, название тона в RGB – лазурный цвет;
Циановый (морской волны) цвет 491-513 нм, 611-640 ТГц; RGB (0; 255; 255), угол цветового тона 180 град, название тона в RGB – циановый цвет;
Весенне-зеленый цвет 514-535 нм, 584-610 ТГц; RGB (0; 255; 127,5), угол цветового тона 150 град, название тона в RGB – весенне-зеленый цвет;
Зеленый цвет 536-558 нм, 559-583 ТГц; RGB (0; 255; 0), угол цветового тона 120 град, название тона в RGB – зеленый лаймовый цвет;
Желто-зеленый цвет 559-581 нм, 537-558 ТГц; RGB (127,5; 255; 0), угол цветового тона 90 град, название тона в RGB – цвет шартрез;
Желтый цвет 582-604 нм, 516-536 ТГц; RGB (255; 255; 0), угол цветового тона 60 град, название тона в RGB – желтый цвет;
Оранжевый цвет 605-626 нм, 496-515 ТГц; RGB (255; 127,5; 0), угол цветового тона 30 град, название тона в RGB – темно-янтарный цвет;
Красный цвет 627-649 нм, 478-495 ТГц; RGB (255; 0; 0), угол цветового тона 0 (360) град, название тона в RGB – цвет
Розовый цвет 650-672 нм, 462-477 ТГц; RGB (255; 0; 127,5), угол цветового тона 330 град, название тона в RGB – глубокий розовый цвет.
Подробно расчет совершенного темперированного спектра видимого света и его сопоставление с круговой диаграммой RGB представлен в работе «Расчет совершенного темперированного спектра видимого света» (с учетом погрешностей метода), расположенной по адресу:
Совершенный темперированный световой спектр – это разделенный на 12 равных частей световой спектр видимого света, принятый за один полный цикл (360 град) в диапазоне длин световых волн от 400 нм до 672, 7273 нм включительно. Спектр совершенного темперированного спектра видимого света – это простое и равномерное чередование 12 цветовых полутонов в пределах цикла цветов видимого света. Эта калибровка спектра также лежит в основе рассматриваемой конвертации (перевода) цветов спектра видимого света по шкале значений длины волны в цвета по шкале RGB, принятой в современной колористике. Заметим, что значения длин волн цветов спектра видимого света легко конвертируются в значения этих цветов по системе RGB, но далеко не все значения цветов в системе RGB можно перевести в значения соответствующих им длин волн.
Расчет совершенного темперированного спектра видимого света и конвертация его в систему RGB проводится в 5 этапов:
1) Качественное определение границ спектрального цикла: спектральный цикл состоит из 12 цветовых тонов, нижней (согласно длине волны) границей которого является начало зоны пурпурного цвета, а его верхней границей является окончание зоны розового цвета.
2) Количественное определение границ спектрального цикла: границы спектрального цикла видимого света определяются значениями от 400 нм (начало зоны пурпурного цвета) до 672,724 нм, а диапазон длин световых волн от 400 нм до 672,724 нм рассматривается как цикл совершенного темперированного спектра видимого света.
3-4) Расчет диапазонов (отрезков значений длины волны и частоты), соответствующих каждому из 12 цветовых полутонов в совершенном темперированном спектре видимого света:
Пурпурный цвет 400-422 нм, 750-794 ТГц;
Фиолетовый цвет 423-444 нм, 710-749 ТГц;
Синий цвет 445-467 нм, 673-709 ТГц;
Лазурный (небесно-голубой) цвет 468- 490 нм, 641-672 ТГц;
Циановый (морской волны) цвет 491-513 нм, 611-640 ТГц;
Весенне-зеленый цвет 514-535 нм, 584-610 ТГц;
Зеленый цвет 536-558 нм, 559-583 ТГц;
Желто-зеленый цвет 559-581 нм, 537-558 ТГц;
Желтый цвет 582-604 нм, 516-536 ТГц;
Оранжевый цвет 605-626 нм, 496-515 ТГц;
Красный цвет 627-649 нм, 478-495 ТГц;
Розовый цвет 650-672 нм, 462-477 ТГц.
5) Итоговая конвертация (перевод) цветовых тонов от значений длины волны в значения системы RGB (Красный-Зеленый-Синий — предложенная в 1860 г. Д. Максвеллом аддитивная система цвета) представлена в начале статьи.
При этом расчете важны следующие замечания:
1) Хотя Исаак Ньютон и начал работу по созданию теории света (1666 г.), но он условно и с научной точки зрения произвольно (отчасти в угоду эзотерическим представлениям о семеричном построении Вселенной, мировой гармонии и Солнечной системы) разделил спектр на 7 цветов. Иоганн Вольфганг фон Гете, хотя и был в отличие от Ньютона больше художником, чем ученым, но верно определил цикл светового спектра (1810 г.), разделив его на 6 частей и включив в него пурпурный цвет как промежуточный между фиолетовым и красным цветами, а также справедливо заключил, что каждый полутон в цветовом круге является результатом сложения двух граничащих с ним с разных сторон полутонов. Далее Джеймс Клерк Максвелл предложил аддитивную систему цвета RGB (1860 г.), которая в наши дни хорошо разработана и широко применяется во всех областях, где работают с цветом (от дизайна одежды и косметики до компьютеров). Также цветовая система RGB использована и нами для цветового описания цикла совершенного темперированного спектра видимого света в тэлиотитологии (науки о совершенстве и циклах).
3) При сочетании совершенного темперированного спектра цветов видимого света и совершенного темперированного музыкального строя – систем, в которых световой и музыкальный циклы (соответственно) условно разделены на 12 хроматических ступеней, можно получить представление о соответствиях между цветовыми и музыкальными полутонами соответствующих рядов. Между ступенями гаммы (рассматривается совершенный темперированный строй) и тонами спектра существует линейное соответствие:
до — глубокий розовый цвет RGB (255; 0; 127,5) – (в обычном понимании розовый цвет);
до диез — красный цвет RGB (255; 0; 0) – (в обычном понимании красный цвет);
ре — темно-янтарный цвет RGB (255; 127,5; 0) – (в обычном понимании оранжевый цвет);
ре диез — желтый цвет RGB (255; 255; 0) – (в обычном понимании желтый цвет);
ми — цвет шартрез RGB (127,5; 255; 0) — (в обычном понимании желто-зеленый цвет);
ми диез — зеленый лаймовый цвет RGB (0; 255; 0) – (в обычном понимании зеленый цвет);
фа — весенне-зеленый цвет RGB (0; 255; 127,5) – (в обычном понимании изумрудный цвет);
фа диез — цвет морской волны (циановый) RGB (0; 255; 255) – (в обычном понимании сине-зеленый цвет);
соль — лазурный цвет RGB (0; 127,5; 255) – (в обычном понимании небесно-голубой цвет);
соль диез — синий цвет RGB (0; 0; 255) – (в обычном понимании синий цвет);
ля — фиолетово-сизый цвет RGB (127,5; 0; 255) – (в обычном понимании фиолетовый цвет);
ля диез — цвет маджента RGB (255; 0; 255) – (в обычном понимании фуксиево-пурпурный цвет).
Переводя эти соответствия на язык житейских терминов, можно сказать, что звук до красного цвета спелого граната, ре — оранжевого цвета апельсина, ми – зеленого цвета сочной травы, фа — голубого цвета всех оттенков морской волны, соль — синего цвета всех оттенков небесного цвета, ля — розово-фиолетового цвета спелого инжира, звук си в совершенном строе отсутствует.
Выводы:
1) В спектре видимого света не семь основных цветов, а 6: розовый, оранжевый, желто-зеленый, весенне-зеленый (изумрудный), лазурный, фиолетовый.
2) В дополнение к основным тонам и на их основе рассматривается еще 6 цветов этого цикла: красный, желтый, зеленый, цвет морской волны, синий, пурпурный, которые являются «диезными» тонами к основным цветам спектра. Таким образом образуются пары в ряду 12 цветовых полутонов: Эти пары соответствуют музыкальным тонам в звуковом цикле гаммы лишенного звука «си» совершенного темперированного строя: (до-до диез)-(ре-ре диез)-(ми-ми диез)-(фа-фа диез)-(соль-соль диез)-(ля-ля диез).
3) На основе шести основных тонов цветового цикла образуются 12 полутонов этого цикла: розовый, [красный], оранжевый, [желтый], желто-зеленый, [зеленый], весенне-зеленый, [цвет морской волны], лазурный, [синий], фиолетовый, [цвет маджента]. Соответствие между звуками гаммы и цветами спектра прямое. Здесь в квадратных скобках обозначены «диезные тона» основных цветов.
4) Рассчитаны частоты для всех цветовых полутонов совершенного темперированного спектра видимого света, которые наряду с данными о частотах для звуковых полутонов совершенного темперированного музыкального строя будут использованы в клавишном инструменте будущего – тэлиотитофоне (от греч. teleiotita — совершенство, foni — голос). Представлена конвертация длин световой волны в значения спектральных цветов по шкале RGB/
На рисунке: спектр цветов видимого света с калибровкой длины волны в нм и калибровкой цветовых параметров по системе RGB.
Цвета свечения светодиодов
Данное явление имеет двойственные свойства: Во-первых, свет это электромагнитная волна, длина которой определяет видимый человеческим глазом цвет. В основе доказательства данной теории лежит опыт Томаса Юнга. Во-вторых, свет это частица — фотон, не существующая при скорости, отличной от скорости света. Открытие Фотона принадлежит Альберту Эйнштейну и датируется 1905-1917 годами, хотя своё имя «Фотон» эта частица получила только в 1926 году.
Видимый диапазон спектра
Цвет неразделимо связан с волновой теорией света — от длины световой волны зависит то, какой цвет будет воспринят человеческим глазом. Границы видимого диапазона светового спектра — от 380 нм (фиолетовый цвет) до 750 нм (красный цвет)
Цвет свечения светодиода определяется типом полупроводника, используемого в светодиоде, а также, для светодиода белого цвета, наличием люминофора.
Светодиоды, выпускаемые на одном оборудовании в одной партии могут незначительно отличаться по цвету свечения, т.к. изготовление светодиодов с фиксированной длиной волны для каждого цвета может оказаться не рентабельно, а иногда и невозможно. На каждый цвет отведен диапазон значений длины световой волны.
Красный светодиод — длина волны 640-660 нм — эти светодиоды обычно не выпускаются яркими.
Красно-оранжевый светодиод — длина волны 630-640 нм — именно эти светодиоды в ярких конструкциях называются яркими красными. Такие светодиоды мы используем при производстве табло высокой яркости, например табло для АЗС.
Оранжевый светодиод — длина волны 620-630 нм — могут выпускаться различной яркости, хотя и не имеют широкого распространения.
Желтый светодиод — 600-620 нм — также выпускаются различной яркости.
Желто-зеленый (590-600 нм) и чисто зеленый (550-580 нм) светодиод — в рекламных конструкциях обычно применяются, как неяркие и яркие светодиоды.
Синий светодиод — 450-510 нм — яркость зависит от длины волны — 450-480 — неяркие светодиоды, 490-510 — яркие.
Светодиоды 440-450нм и 660-670нм для растений и фитолампа на них
Как то я уже рассказывал о изготовлении ламп для подсветки растений из наборов с ТАО. Тогда меня покритиковали, что я использовал светодиоды «неправильного спектра».
И вот я решил исправится и купил «правильные светодиоды» синие 440-450нм и красные 660-670нм.
Брать именитые Bridgelux почти за 1$ не позволила жаба, поэтому на свой страх и риск купил неизвестного производителя. Опыт удался, за подробностями под кат.
Заказ
Итак перелопатив десятки продавцов на ТАОБАО решил рискнуть и взять у этого продавца
Лот на светодиоды один, но в опциях можно выбрать синие, красные, 1,3 и 5 Вт, а также уже напаянные на алюминиевую звездочку.
Цена через посредника MisterTao:
Синий светодиод (450-455нм) 3вт без радиатора — $0.23 x 20шт = $4.6
Красный светодиод (660-670нм) 3вт без радиатора — $0.31 x 20шт = $6.2
С доставкой и комиссией получается около $17 или $0.42 за штуку если больше ничего не брать.
Я брал, поэтому мне они вышли дешевле.
Производитель светодиодов имеет сайт на китайском, на котором есть много интересной светодиодной продукции.
К сожалению до даташитов этот производитель еще не дорос.
Заказ был доставлен еще в ноябре за 33 дня обычной почтой.
Красные светодиоды 3Вт
Код производителя: PJH-P3R140A1-60T
Длина волны: 660-660 нм
Рабочее напряжение: 2.6-3.0 В
Максимальный ток: 700 мА
Размер кристалла: 4.3 мм
Световой поток: 60-80 лм
Синие светодиоды 3Вт
Код производителя: PJH-P3R140A1-30T
Длина волны: 450-455 нм
Рабочее напряжение: 3.4-3.8 В
Максимальный ток: 700 мА
Размер кристалла: 4.5 мм
Световой поток: 30-40 лм
Пришли светодиоды в пакетиках подписанных от руки по китайски
Люминофора у монохромных светодиодов нет, линзы прозрачные и кристаллы видны. У синего (слева) кристалл чуть больше чем у красного (справа), что соответствует описанию.
Распаиваю проверенным методом при помощи термопасты и фена на алюминиевые радиаторы-звездочки.
Радиаторы звездочки намазываю КПТ-8 и двумя капельками суперклея креплю к алюминиевому профилю
Подключаю поочередно синий и красный диоды к источнику 5В через мощный переменный резистор.
Вольт-амперную характеристика и зависимость мощности от тока
Как видно из графика и таблицы, красный светодиод при паспортном токе 700мА выдает мощность 1.65 Вт при рабочем напряжении 2.36 В. Синий ближе к заявленным характеристикам.
Драйвер для светодиодов (4-6)x3Вт у меня лежал давно. Я ему давно заменил радиатор на более мощный
Подключаю и получаю мигалку-цветомузыку ))). Светодиоды начинают моргать примерно раз в секунду.
Драйвер дает больше напряжения, чем нужно 5-ти последовательным светодиодам. Всему виной красные диоды с низким рабочим напряжением.
Впаиваю последовательно диодам 1-ваттный резистор на 2 Ом и все работает нормально, хотя резистор сильно греется. Думаю, в дальнейшем добавлю еще один красный диод, а пока продолжим тестировать:
Ток в цепи светодиодов почти 0.6А
Напряжение 13.5В
Померил напряжение на каждом диоде, посчитал мощность, получил, что синие работают на 2Вт, красные на 1.3Вт.
Мощность по синему цвету — 4Вт, по красному 3.9Вт.
Суммарная мощность светильника 7.9Вт + чуть меньше 1 Вт на сопротивлении.
После часа работы светодиодов, радиатор нагрелся до 41 С
А что же со спектром?
Обманул нас продавец или нет?
Для измерения спектра попросил у знакомого учителя физики принести из кабинета спектрометр. Получил дифракционную решетку с шагом 0.002 мм и комментарий, что они спектры на такими уроке измеряют.
Сворачиваю бумажную трубу, вставляю туда решетку. Креплю к алюминиевому профилю с напечатанной линейкой.
Посветил зеленым лазером 532 нм. Четко видно отклонение луча с 1-м и 2-м максимумом света
Белый цвет фонарика разлагается на цвета
Светодиод дает круг. Установка на входе трубы щели 1мм форму пятна не меняет, а яркость пятен снижает. Значит будем мерить между краями пятен.
Для каждого источника света были проведены ряд измерений с разным расстоянием до решетки. Получаем следующую таблицу
Длина волны каждого источника соответствует заявленным характеристикам. Точность измерения не менее 5%.
Для большей точности нужно собирать жесткую конструкцию спектрометра.
Выводы:
1. Спектральные характеристики светодиодов близки к заявленным производителем. Если синие довольно близки по характеристикам к тем, что применялись мною раньше, то красные имеют «более правильный» спектр для реакции фотосинтеза.
2. Мощность красного светодиода меньше синего при одинаковом токе и ниже заявленной в характеристиках. Для поднятия мощности их ближе к паспортной нужно питать красные светодиоды отдельно драйвером на 900 — 1000 мА, но сколько они проработают в таком режиме, неизвестно. Я решаю проблему разности мощности увеличением количества красных светодиодов.
3. В целом светодиоды вполне оправдали мои ожидания и годятся для изготовления фитоламп.
4. Эффективность фитолампы оценить пока трудно. Растения хорошо живут с дополнительным светом. Весной будут ящики с рассадой. Освещу половину фитосветом и сравню рост.
Собрал новую кормушку для птиц из "набора водопроводчика" более ни на что не пригодившегося.