27,Амплитудный и фазовый спектры сигнала. Отрицательные частоты. Физический и двусторонний спектры.
Так как аргумент комплексного числа есть функция многозначная, то для вычисления фаз нужно предварительно договариваться о выборе значений . Можно, например, условиться брать главное значение аргумента, т.е. значение, удовлетворяющее условию
Амплитуды и фазы гармонических колебаний, в виде суммы которых представляется периодическая функция f(x), играют большую роль в различных прикладных вопросах. Для наглядного представления этих амплитуд и фаз делают следующие построения: возьмем ось частот и на этой оси отложим частоты .
Против каждой частоты перпендикулярно к оси будем откладывать соответствующую амплитуду .Так как , то , т.е. амплитудный спектр симметричен относительно прямой L=0, а так как →0 при n→∞, то ординаты амплитудного спектра стремятся к нулю по мере удаления от прямой L=0, причем порядок убывания этих ординат не ниже чем (без доказательства).
Аналогично строится фазовый спектр функции f(x).Для этого против точек оси частот откладываются отрезки длины (вверх >0 и вниз <0).Так как = и , то , т.е. фазовый спектр симметричен относительно точки L=0.
Отрицательные частоты
Понятие отрицательной и положительной частоты может быть показано на примере вращающегося в ту или другую сторону вектора. Частота со знаком отражает как скорость, так и направление вращения. Скорость выражена в оборотах (циклах) в секунду (герцах) или рад/с (где 1 оборот соответствует 2π радианам).
Для заданного во времени сигнала такой вектор представляет его на комплексной плоскости. Зависимость значения сигнала от времени есть лишь зависимость проекции вектора на действительную ось от времени. Поэтому понятие отрицательной частоты не может быть представлено в виде некомплексных сигналов во временной области и распространяется только на частотную.
Чтобы сигнал был представим в некомплексном виде, формула Эйлера требует равенства коэффициентов при комплесных экспонентах частот разных знаков. Несимметричность спектра равноценна наличию в сигнале гармоник, заданных только для отрицательной частоты.
Рассмотрим сигнал с девиацией частоты относительно несущей. При переносе несущей на ноль обычным гетеродином информация искажается. Поэтому для правильной обработки необходимо использовать квадратурный гетеродин, в котором вводится дополнительный канал, позволяющий сохранить информацию о несимметричности спектра (об отрицательной частоте относительно несущей) представляя огибающую двумя равноценными сигналами: исходный сигнал становится комплексным. Получить из такого сигнала вещественнный можно лишь его переносом на несущую
, иначе требуется два канала передачи.
Пример искажения сигнала при преобразовании несущей обычным гетеродином:
Преобразование квадратурным гетеродином:
Для частотной области таким непредставимым понятием является временная асимметрия сигналов: лишь симметричные сигналы имеют некомплексный спектр.
Нечетная симметрия синусоиды во времени, в частотной области представлена сменой знака частоты: , а значения косинуса не связаны со знаком частоты.
Таким образом, понятие отрицательной частоты столь же оправданно, как и понятие отрицательного времени. Наглядное представление вращающегося в разные стороны вектора можно получить на экране осциллографа, подавая синус на вертикальные, а косинус на горизонтальные пластины и меняя полуось времени (знак синуса).
Большая Энциклопедия Нефти и Газа
Во все приведенные выражения фазовые соотношения — фазовый спектр сигнала и фазо-частотная характеристика б — ( прибора ИД — не входят. Таким образом, если заранее известно, что обработка полученной о сигнале информации будет производиться статистическими методами, то к фазо-частотной характеристике измерительной системы можно не предъявлять никаких требований. [2]
Зависит ли форма АКФ Ч т) от фазового спектра сигнала . [3]
Выбранные признаки ( I), связанные с аыплиаудным и фазовым спектром сигнала усилия , ставят в соотвеазшие предъявленной динамограыце определенную точку в Л / — мерном пространстве признаков. В результате предъявления ЙСТД обучающей выборки образов-динамограии в признаковом пространстве образуется скопление Шочек вокруг некоторых центров. [4]
Выражение (2.40) показывает, что смещение некоторого апериодического сигнала во времени вызывает изменение лишь фазового спектра сигнала и не приводит к изменению амплитудного спектра. [5]
Из выражения (2.35) следует, что спектральная плотность АКФ равна квадрату модуля спектральной плотности сигнала и, следовательно, не зависит от фазового спектра сигнала . [6]
Таким образом, при дифференцировании низкие частоты ослабляются, а высокие усиливаются. Фазовый спектр сигнала сдвигается на 90 для положительных частот и на — 90 для отрицательных. [7]
Итак, при интегрировании исходного сигнала высокие частоты ослабляются, а низкие усиливаются. Фазовый спектр сигнала смещается на — 90 для положительных частот и на 90 для отрицательных. Множитель l / 0 oo) называют оператором интегрирования в частотной области. [8]
Поскольку д зависит от частоты, при проходе через четырехполюсник сигнала, включающего в себя многие частоты, его спектральный состав, а следовательно, и форма изменяются. Характер изменения частотного и фазового спектра сигнала может быть найден с помощью полученных в этом параграфе формул. [9]
Согласно же вторым равенствам (6.6), (6.19) эта цепь изменяет фазовый спектр сигнала . [10]
Следовательно, частотная характеристика оптимального фильтра должна с точностью до масштабного множителя повторять модуль спектра сигнала. Фазовая характеристика, взятая с обратным знаком, должна отличаться от фазового спектра сигнала только на величину со / о, определяющую сдвиг момента достижения пика сигнала па выходе фильтра от начала отсчета времени. [11]
Амплитудно-частотная характеристика (АЧХ). Спектр сигнала.
При обсуждении переменного тока в одной из предыдущих статей (ссылка) мы познакомились с понятием гармонической (синусоидальной) функции. А бывают ли негармонические функции и сигналы, и как с ними работать? В этом нам и предстоит сегодня разобраться. Кроме того, мы рассмотрим важнейшее понятие — амплитудно-частотную характеристику (АЧХ) сигналов.
Гармонические и негармонические сигналы.
И для начала чуть подробнее разберемся, как классифицируются сигналы. В первую очередь, нас интересуют периодические сигналы. Их форма повторяется через определенный интервал времени T , называемый периодом. Периодические сигналы в свою очередь делятся на два больших класса — гармонические и негармонические. Гармонический сигнал — это сигнал, который можно описать следующей функцией:
Здесь A — амплитуда сигнала, w — циклическая частота, а \phi — начальная фаза. Может возникнуть логичный вопрос — разве синусоидальный сигнал не является гармоническим? Конечно, является, дело в том, что sin\alpha = cos(\frac<\pi><2>\medspace-\medspace \alpha) — то есть сигналы отличаются начальной фазой, соответственно, синусоидальный сигнал не противоречит определению, которое мы дали для гармонических колебаний.
Вторым подклассом периодических сигналов являются негармонические колебания. Вот пример негармонического сигнала:
Как видите, несмотря на свой вид, сигнал остается периодическим, то есть его форма повторяется через интервал времени, равный периоду.
Для работы с такими сигналами и их исследования существует определенная методика, которая заключается в разложении сигнала в ряд Фурье. Суть состоит в том, что негармонический периодический сигнал (при выполнении определенных условий) можно представить в виде суммы гармонических колебаний с определенными амплитудами, частотами и начальными фазами. Важным нюансом является то, что все гармонические колебания, которые участвуют в суммировании, должны иметь частоты, кратные частоте исходного негармонического сигнала. Возможно это пока не совсем понятно, так что рассмотрим практический пример и разберемся подробнее. И для примера используем сигнал, который изображен на рисунке чуть выше. Его можно представить следующим образом:
Давайте изобразим все эти сигналы на одном графике:
Функции u_1(t) , u_2(t) называют гармониками сигнала, а ту из них, период которой равен периоду негармонического сигнала, называют первой или основной гармоникой. В данном случае первой гармоникой является функция u_1(t) (ее частота равна частоте исследуемого негармонического сигнала, соответственно, равны и их периоды). А функция u_2(t) = 1.5 sin(2t) представляет из себя ни что иное как вторую гармонику сигнала (ее частота в два раза больше). В общем случае, негармонический сигнал раскладывается на бесконечное число гармоник:
Здесь U_k — амплитуда, а \phi_k — начальная фаза k-ой гармоники. Как мы уже упомянули чуть ранее, частоты всех гармоник кратны частоте первой гармоники, собственно, это мы и наблюдаем в данной формуле. U_0 — это нулевая гармоника, ее частота равна 0, она равна среднему значению функции за период. Почему среднему? Смотрите — среднее значения функции синуса за период равно 0, а значит при усреднении в этой формуле все слагаемые, кроме U_0 будут равны 0 👍
Амплитудный спектр сигнала.
Совокупность всех гармонических составляющих негармонического сигнала называют спектром этого сигнала. Различают фазовый и амплитудный спектр сигнала:
- фазовый спектр сигнала — совокупность начальных фаз всех гармоник
- амплитудный спектр сигнала — амплитуды всех гармоник, из которых складывается негармонический сигнал
Давайте рассмотрим амплитудный спектр подробнее. Для визуального изображения спектра используют диаграммы, представляющие из себя набор вертикальных линий определенной длины (длина зависит от амплитуды сигналов). На горизонтальной оси диаграммы откладываются частоты гармоник:
При этом на горизонтальной оси могут откладываться как частоты в Гц, так и просто номера гармоник, как в данном случае. А по вертикальной оси — амплитуды гармоник, тут все понятно. Давайте построим амплитудный спектр сигнала для негармонического колебания, которое мы рассматривали в качестве примера в самом начале статьи. Напоминаю, что его разложение в ряд Фурье выглядит следующим образом:
У нас есть две гармоники, амплитуды которых равны, соответственно, 2 и 1.5. Поэтому на диаграмме две линии, длины которых соответствуют амплитудам гармонических колебаний. Фазовый спектр сигнала строится аналогично, за той лишь разницей, что используются начальные фазы гармоник, а не амплитуды.
Итак, с построением и анализом амплитудного спектра сигнала мы разобрались. Давайте перейдем к следующей теме сегодняшней статьи — к понятию амплитудно-частотной характеристики.
Амплитудно-частотная характеристика (АЧХ).
АЧХ является важнейшей характеристикой многих цепей и устройств — фильтров, усилителей звука и т. д. Даже простые наушники имеют свою собственную амплитудно-частотную характеристику. Проанализируем, какой смысл она в себе несет.
АЧХ — это зависимость амплитуды выходного сигнала от частоты входного сигнала. Как мы выяснили в первой части статьи, негармонический периодический сигнал можно разложить в ряд Фурье. Но мы сейчас рассмотрим, в первую очередь, аудио-сигнал, и выглядит он следующим образом:
Как видите, ни о какой периодичности здесь не идет и речи. Но, к счастью, существуют специальные алгоритмы, которые позволяют представить звуковой сигнал в виде спектра входящих в него частот. Мы сейчас не будем подробно разбирать эти алгоритмы, это тема для отдельной статьи. Просто примем тот факт, что они позволяют нам осуществить такое преобразование.
Соответственно, мы можем построить диаграмму амплитудного спектра такого сигнала. А пройдя через какую-либо цепь (к примеру, через наушники при воспроизведении звука) сигнал будет изменен. Так вот амплитудно-частотная характеристика как раз и показывает, какие изменения будет претерпевать входной сигнал при прохождении через ту или иную цепь. Давайте детально обсудим этот момент.
Итак, на входе мы имеем ряд гармоник. Амплитудная-частотная характеристика показывает, как изменится амплитуда той или иной гармоники при прохождении через цепь. Рассмотрим пример АЧХ:
Разбираем поэтапно, что тут изображено. Начнем с осей графика АЧХ. По оси y мы откладываем величину выходного напряжения (или коэффициента усиления, как на данном рисунке). Коэффициент усиления мы считаем в дБ, соответственно величина, равная 0 дБ, соответствует усилению в 1 раз, то есть амплитуда сигнала остается неизменной.
По оси x откладываются частоты входного сигнала. Таким образом, в рассматриваемом случае для всех гармоник, частоты которых лежат в интервале от 100 до 10000 Гц, амплитуда не изменится. А сигналы всех остальных гармоник будут ослаблены.
На графике отдельно отмечены частоты f_1 и f_2 . Их отличительной особенностью является то, что сигнал гармоник данных частот будет ослаблен в 1.41 раза (3 дБ) по напряжению. Это соответствует уменьшению по мощности в 2 раза . Полосу частот между f_1 и f_2 называют полосой пропускания. Получается следующая ситуация — сигналы всех гармоник, частоты которых лежат в пределах полосы пропускания устройства/цепи будут ослаблены менее, чем в 2 раза по мощности.
Практические примеры АЧХ аудио-устройств.
Частотный диапазон аудио-устройств обычно разбивают на низкие, средние и высокие частоты. Приблизительно это выглядит так:
- 20 Гц — 160 Гц — область низких частот
- 160 Гц — 1.28 КГц — область средних частот
- 1.28 КГц — 20.5 КГц — область высоких частот
Именно такую терминологию обычно можно встретить в разных программах-эквалайзерах, используемых для настройки звука. Теперь вы знаете, что красивые графики из таких программ являются именно амплитудно-частотными характеристиками, с которыми мы познакомились в сегодняшней статье. И в завершение статьи посмотрим на пару примеров АЧХ:
Здесь мы можем видеть амплитудно-частотную характеристику усилителя. Причем усилены будут преимущественно средние частоты диапазона.
Во втором случае ситуация совсем другая — низкие и верхние частоты усиливаются, а в области средних частот для гармоник с частотой 500 Гц мы наблюдаем значительное ослабление.
А теперь усиливаются только низкие частоты. Аудио-аппаратура с такой АЧХ будет обладать высоким уровнем басов.
На этом мы и заканчиваем нашу сегодняшнюю статью. Спасибо за внимание и ждем вас на нашем сайте снова 🤝