random — Generate pseudo-random numbers¶
This module implements pseudo-random number generators for various distributions.
For integers, there is uniform selection from a range. For sequences, there is uniform selection of a random element, a function to generate a random permutation of a list in-place, and a function for random sampling without replacement.
On the real line, there are functions to compute uniform, normal (Gaussian), lognormal, negative exponential, gamma, and beta distributions. For generating distributions of angles, the von Mises distribution is available.
Almost all module functions depend on the basic function random() , which generates a random float uniformly in the half-open range 0.0 <= X < 1.0 . Python uses the Mersenne Twister as the core generator. It produces 53-bit precision floats and has a period of 2**19937-1. The underlying implementation in C is both fast and threadsafe. The Mersenne Twister is one of the most extensively tested random number generators in existence. However, being completely deterministic, it is not suitable for all purposes, and is completely unsuitable for cryptographic purposes.
The functions supplied by this module are actually bound methods of a hidden instance of the random.Random class. You can instantiate your own instances of Random to get generators that don’t share state.
Class Random can also be subclassed if you want to use a different basic generator of your own devising: in that case, override the random() , seed() , getstate() , and setstate() methods. Optionally, a new generator can supply a getrandbits() method — this allows randrange() to produce selections over an arbitrarily large range.
The random module also provides the SystemRandom class which uses the system function os.urandom() to generate random numbers from sources provided by the operating system.
The pseudo-random generators of this module should not be used for security purposes. For security or cryptographic uses, see the secrets module.
M. Matsumoto and T. Nishimura, “Mersenne Twister: A 623-dimensionally equidistributed uniform pseudorandom number generator”, ACM Transactions on Modeling and Computer Simulation Vol. 8, No. 1, January pp.3–30 1998.
Complementary-Multiply-with-Carry recipe for a compatible alternative random number generator with a long period and comparatively simple update operations.
Bookkeeping functions¶
Initialize the random number generator.
If a is omitted or None , the current system time is used. If randomness sources are provided by the operating system, they are used instead of the system time (see the os.urandom() function for details on availability).
If a is an int, it is used directly.
With version 2 (the default), a str , bytes , or bytearray object gets converted to an int and all of its bits are used.
With version 1 (provided for reproducing random sequences from older versions of Python), the algorithm for str and bytes generates a narrower range of seeds.
Changed in version 3.2: Moved to the version 2 scheme which uses all of the bits in a string seed.
Changed in version 3.11: The seed must be one of the following types: NoneType, int , float , str , bytes , or bytearray .
Return an object capturing the current internal state of the generator. This object can be passed to setstate() to restore the state.
random. setstate ( state ) ¶
state should have been obtained from a previous call to getstate() , and setstate() restores the internal state of the generator to what it was at the time getstate() was called.
Functions for bytes¶
Generate n random bytes.
This method should not be used for generating security tokens. Use secrets.token_bytes() instead.
New in version 3.9.
Functions for integers¶
Return a randomly selected element from range(start, stop, step) . This is equivalent to choice(range(start, stop, step)) , but doesn’t actually build a range object.
The positional argument pattern matches that of range() . Keyword arguments should not be used because the function may use them in unexpected ways.
Changed in version 3.2: randrange() is more sophisticated about producing equally distributed values. Formerly it used a style like int(random()*n) which could produce slightly uneven distributions.
Deprecated since version 3.10: The automatic conversion of non-integer types to equivalent integers is deprecated. Currently randrange(10.0) is losslessly converted to randrange(10) . In the future, this will raise a TypeError .
Deprecated since version 3.10: The exception raised for non-integral values such as randrange(10.5) or randrange(’10’) will be changed from ValueError to TypeError .
Return a random integer N such that a <= N <= b . Alias for randrange(a, b+1) .
random. getrandbits ( k ) ¶
Returns a non-negative Python integer with k random bits. This method is supplied with the MersenneTwister generator and some other generators may also provide it as an optional part of the API. When available, getrandbits() enables randrange() to handle arbitrarily large ranges.
Changed in version 3.9: This method now accepts zero for k.
Functions for sequences¶
Return a random element from the non-empty sequence seq. If seq is empty, raises IndexError .
random. choices ( population , weights = None , * , cum_weights = None , k = 1 ) ¶
Return a k sized list of elements chosen from the population with replacement. If the population is empty, raises IndexError .
If a weights sequence is specified, selections are made according to the relative weights. Alternatively, if a cum_weights sequence is given, the selections are made according to the cumulative weights (perhaps computed using itertools.accumulate() ). For example, the relative weights [10, 5, 30, 5] are equivalent to the cumulative weights [10, 15, 45, 50] . Internally, the relative weights are converted to cumulative weights before making selections, so supplying the cumulative weights saves work.
If neither weights nor cum_weights are specified, selections are made with equal probability. If a weights sequence is supplied, it must be the same length as the population sequence. It is a TypeError to specify both weights and cum_weights.
The weights or cum_weights can use any numeric type that interoperates with the float values returned by random() (that includes integers, floats, and fractions but excludes decimals). Weights are assumed to be non-negative and finite. A ValueError is raised if all weights are zero.
For a given seed, the choices() function with equal weighting typically produces a different sequence than repeated calls to choice() . The algorithm used by choices() uses floating point arithmetic for internal consistency and speed. The algorithm used by choice() defaults to integer arithmetic with repeated selections to avoid small biases from round-off error.
New in version 3.6.
Changed in version 3.9: Raises a ValueError if all weights are zero.
Shuffle the sequence x in place.
To shuffle an immutable sequence and return a new shuffled list, use sample(x, k=len(x)) instead.
Note that even for small len(x) , the total number of permutations of x can quickly grow larger than the period of most random number generators. This implies that most permutations of a long sequence can never be generated. For example, a sequence of length 2080 is the largest that can fit within the period of the Mersenne Twister random number generator.
Deprecated since version 3.9, removed in version 3.11: The optional parameter random.
Return a k length list of unique elements chosen from the population sequence. Used for random sampling without replacement.
Returns a new list containing elements from the population while leaving the original population unchanged. The resulting list is in selection order so that all sub-slices will also be valid random samples. This allows raffle winners (the sample) to be partitioned into grand prize and second place winners (the subslices).
Members of the population need not be hashable or unique. If the population contains repeats, then each occurrence is a possible selection in the sample.
Repeated elements can be specified one at a time or with the optional keyword-only counts parameter. For example, sample([‘red’, ‘blue’], counts=[4, 2], k=5) is equivalent to sample([‘red’, ‘red’, ‘red’, ‘red’, ‘blue’, ‘blue’], k=5) .
To choose a sample from a range of integers, use a range() object as an argument. This is especially fast and space efficient for sampling from a large population: sample(range(10000000), k=60) .
If the sample size is larger than the population size, a ValueError is raised.
Changed in version 3.9: Added the counts parameter.
Changed in version 3.11: The population must be a sequence. Automatic conversion of sets to lists is no longer supported.
Real-valued distributions¶
The following functions generate specific real-valued distributions. Function parameters are named after the corresponding variables in the distribution’s equation, as used in common mathematical practice; most of these equations can be found in any statistics text.
Return the next random floating point number in the range 0.0 <= X < 1.0
Return a random floating point number N such that a <= N <= b for a <= b and b <= N <= a for b < a .
The end-point value b may or may not be included in the range depending on floating-point rounding in the equation a + (b-a) * random() .
random. triangular ( low , high , mode ) ¶
Return a random floating point number N such that low <= N <= high and with the specified mode between those bounds. The low and high bounds default to zero and one. The mode argument defaults to the midpoint between the bounds, giving a symmetric distribution.
random. betavariate ( alpha , beta ) ¶
Beta distribution. Conditions on the parameters are alpha > 0 and beta > 0 . Returned values range between 0 and 1.
random. expovariate ( lambd ) ¶
Exponential distribution. lambd is 1.0 divided by the desired mean. It should be nonzero. (The parameter would be called “lambda”, but that is a reserved word in Python.) Returned values range from 0 to positive infinity if lambd is positive, and from negative infinity to 0 if lambd is negative.
random. gammavariate ( alpha , beta ) ¶
Gamma distribution. (Not the gamma function!) Conditions on the parameters are alpha > 0 and beta > 0 .
The probability distribution function is:
Normal distribution, also called the Gaussian distribution. mu is the mean, and sigma is the standard deviation. This is slightly faster than the normalvariate() function defined below.
Multithreading note: When two threads call this function simultaneously, it is possible that they will receive the same return value. This can be avoided in three ways. 1) Have each thread use a different instance of the random number generator. 2) Put locks around all calls. 3) Use the slower, but thread-safe normalvariate() function instead.
Changed in version 3.11: mu and sigma now have default arguments.
Log normal distribution. If you take the natural logarithm of this distribution, you’ll get a normal distribution with mean mu and standard deviation sigma. mu can have any value, and sigma must be greater than zero.
random. normalvariate ( mu = 0.0 , sigma = 1.0 ) ¶
Normal distribution. mu is the mean, and sigma is the standard deviation.
Changed in version 3.11: mu and sigma now have default arguments.
mu is the mean angle, expressed in radians between 0 and 2*pi, and kappa is the concentration parameter, which must be greater than or equal to zero. If kappa is equal to zero, this distribution reduces to a uniform random angle over the range 0 to 2*pi.
random. paretovariate ( alpha ) ¶
Pareto distribution. alpha is the shape parameter.
random. weibullvariate ( alpha , beta ) ¶
Weibull distribution. alpha is the scale parameter and beta is the shape parameter.
Alternative Generator¶
Class that implements the default pseudo-random number generator used by the random module.
Deprecated since version 3.9: In the future, the seed must be one of the following types: NoneType , int , float , str , bytes , or bytearray .
Class that uses the os.urandom() function for generating random numbers from sources provided by the operating system. Not available on all systems. Does not rely on software state, and sequences are not reproducible. Accordingly, the seed() method has no effect and is ignored. The getstate() and setstate() methods raise NotImplementedError if called.
Notes on Reproducibility¶
Sometimes it is useful to be able to reproduce the sequences given by a pseudo-random number generator. By re-using a seed value, the same sequence should be reproducible from run to run as long as multiple threads are not running.
Most of the random module’s algorithms and seeding functions are subject to change across Python versions, but two aspects are guaranteed not to change:
If a new seeding method is added, then a backward compatible seeder will be offered.
The generator’s random() method will continue to produce the same sequence when the compatible seeder is given the same seed.
Python 3: Генерация случайных чисел (модуль random)
Python порождает случайные числа на основе формулы, так что они не на самом деле случайные, а, как говорят, псевдослучайные [1]. Этот способ удобен для большинства приложений (кроме онлайновых казино) [2].
Модуль random позволяет генерировать случайные числа. Прежде чем использовать модуль, необходимо подключить его с помощью инструкции:
random.random
random.random() — возвращает псевдослучайное число от 0.0 до 1.0
random.seed
random.seed(<Параметр>) — настраивает генератор случайных чисел на новую последовательность. По умолчанию используется системное время. Если значение параметра будет одиноким, то генерируется одинокое число:
random.uniform
random.uniform(<Начало>, <Конец>) — возвращает псевдослучайное вещественное число в диапазоне от <Начало> до <Конец>:
random.randint
random.randint(<Начало>, <Конец>) — возвращает псевдослучайное целое число в диапазоне от <Начало> до <Конец>:
random.choince
random.choince(<Последовательность>) — возвращает случайный элемент из любой последовательности (строки, списка, кортежа):
random.randrange
random.randrange(<Начало>, <Конец>, <Шаг>) — возвращает случайно выбранное число из последовательности.
random.shuffle
random.shuffle(<Список>) — перемешивает последовательность (изменяется сама последовательность). Поэтому функция не работает для неизменяемых объектов.
Вероятностные распределения
random.triangular(low, high, mode) — случайное число с плавающей точкой, low ≤ N ≤ high. Mode — распределение.
random.betavariate(alpha, beta) — бета-распределение. alpha>0, beta>0. Возвращает от 0 до 1.
random.expovariate(lambd) — экспоненциальное распределение. lambd равен 1/среднее желаемое. Lambd должен быть отличным от нуля. Возвращаемые значения от 0 до плюс бесконечности, если lambd положительно, и от минус бесконечности до 0, если lambd отрицательный.
random.gammavariate(alpha, beta) — гамма-распределение. Условия на параметры alpha>0 и beta>0.
random.gauss(значение, стандартное отклонение) — распределение Гаусса.
random.lognormvariate(mu, sigma) — логарифм нормального распределения. Если взять натуральный логарифм этого распределения, то вы получите нормальное распределение со средним mu и стандартным отклонением sigma. mu может иметь любое значение, и sigma должна быть больше нуля.
random.normalvariate(mu, sigma) — нормальное распределение. mu — среднее значение, sigma — стандартное отклонение.
random.vonmisesvariate(mu, kappa) — mu — средний угол, выраженный в радианах от 0 до 2π, и kappa — параметр концентрации, который должен быть больше или равен нулю. Если каппа равна нулю, это распределение сводится к случайному углу в диапазоне от 0 до 2π.
random.paretovariate(alpha) — распределение Парето.
random.weibullvariate(alpha, beta) — распределение Вейбулла.
Примеры
Генерация произвольного пароля
Хороший пароль должен быть произвольным и состоять минимум из 6 символов, в нём должны быть цифры, строчные и прописные буквы. Приготовить такой пароль можно по следующему рецепту:
Этот же скрипт можно записать всего в две строки:
Данная команда является краткой записью цикла for, вместо неё можно было написать так:
Данный цикл повторяется 12 раз и на каждом круге добавляет к строке psw произвольно выбранный элемент из списка.
Python 3: Генерация случайных чисел (модуль random)¶
Python порождает случайные числа на основе формулы, так что они не на самом деле случайные, а, как говорят, псевдослучайные [1]. Этот способ удобен для большинства приложений (кроме онлайновых казино) [2].
[1] | Википедия: Генератор псевдослучайных чисел |
[2] | Доусон М. Программируем на Python. — СПб.: Питер, 2014. — 416 с.: ил. — 3-е изд |
Модуль random позволяет генерировать случайные числа. Прежде чем использовать модуль, необходимо подключить его с помощью инструкции:
random.random¶
random.random() — возвращает псевдослучайное число от 0.0 до 1.0
random.seed¶
random.seed(<Параметр>) — настраивает генератор случайных чисел на новую последовательность. По умолчанию используется системное время. Если значение параметра будет одиноким, то генерируется одинокое число:
random.uniform¶
random.uniform(<Начало>, <Конец>) — возвращает псевдослучайное вещественное число в диапазоне от <Начало> до <Конец> :
random.randint¶
random.randint(<Начало>, <Конец>) — возвращает псевдослучайное целое число в диапазоне от <Начало> до <Конец> :
random.choince¶
random.choince(<Последовательность>) — возвращает случайный элемент из любой последовательности (строки, списка, кортежа):
random.randrange¶
random.randrange(<Начало>, <Конец>, <Шаг>) — возвращает случайно выбранное число из последовательности.
random.shuffle¶
random.shuffle(<Список>) — перемешивает последовательность (изменяется сама последовательность). Поэтому функция не работает для неизменяемых объектов.
Вероятностные распределения¶
random.triangular(low, high, mode) — случайное число с плавающей точкой, low ≤ N ≤ high . Mode — распределение.
random.betavariate(alpha, beta) — бета-распределение. alpha>0 , beta>0 . Возвращает от 0 до 1.
random.expovariate(lambd) — экспоненциальное распределение. lambd равен 1/среднее желаемое. Lambd должен быть отличным от нуля. Возвращаемые значения от 0 до плюс бесконечности, если lambd положительно, и от минус бесконечности до 0, если lambd отрицательный.
random.gammavariate(alpha, beta) — гамма-распределение. Условия на параметры alpha>0 и beta>0 .
random.gauss(значение, стандартное отклонение) — распределение Гаусса.
random.lognormvariate(mu, sigma) — логарифм нормального распределения. Если взять натуральный логарифм этого распределения, то вы получите нормальное распределение со средним mu и стандартным отклонением sigma . mu может иметь любое значение, и sigma должна быть больше нуля.
random.normalvariate(mu, sigma) — нормальное распределение. mu — среднее значение, sigma — стандартное отклонение.
random.vonmisesvariate(mu, kappa) — mu — средний угол, выраженный в радианах от 0 до 2π, и kappa — параметр концентрации, который должен быть больше или равен нулю. Если каппа равна нулю, это распределение сводится к случайному углу в диапазоне от 0 до 2π.
random.paretovariate(alpha) — распределение Парето.
random.weibullvariate(alpha, beta) — распределение Вейбулла.
Примеры¶
Генерация произвольного пароля¶
Хороший пароль должен быть произвольным и состоять минимум из 6 символов, в нём должны быть цифры, строчные и прописные буквы. Приготовить такой пароль можно по следующему рецепту:
Этот же скрипт можно записать всего в две строки:
Данная команда является краткой записью цикла for, вместо неё можно было написать так:
Данный цикл повторяется 12 раз и на каждом круге добавляет к строке psw произвольно выбранный элемент из списка.
Модуль random. Генерация случайных чисел
В процессе программирования на Python может понадобиться случайное число. О том, как создать собственный простейший генератор псевдослучайных чисел и пойдет разговор в этой статье. Будут рассмотрены некоторые популярные методы и функции, которые включены в модуль random для Python 3 и позволяют получать значения случайным образом (randomly).
В качестве лирического отступления следует сказать, что, согласно специфике внутреннего состояния генератора, модуль для Python под названием random позволяет сгенерировать не случайный, а псевдослучайный элемент, то есть значения и их последовательности формируются на основе формулы. Раз последовательность зависит от нескольких параметров, она не является случайной в полном смысле этого слова. Если нужна истинная случайность, генерация может основываться, к примеру, на принципах квантовой механики, однако на практике это слишком дорого и сложно, да и не всегда экономически целесообразно, ведь для многих задач программирования вполне подойдут и псевдослучайные генераторы (если речь идет не про онлайн-казино). Вдобавок к этому, случайность (randomness) — вещь капризная, поэтому, как тут не вспомнить прекрасное высказывание американского математика Роберта Кавью:
Также на ум приходит еще одно интересное высказывание, но уже от выдуманного персонажа и с некоторым уклоном в философию:
Применение random в Python
В языке программирования «Пайтон» модуль random позволяет реализовывать генератор псевдослучайных чисел для разных распределений, куда входят как целые (integers), так и вещественные числа, то есть числа с плавающей запятой.
Общий список методов, поддерживаемых модулем random, можно посмотреть в таблице ниже. Тут стоит обратить внимание, что возврат значений может осуществляться на основе разных распределений (распределение Парето, распределение Вейбулла и т. д.), выбор которых зависит от области применения генератора случайных чисел (статистика, теория вероятности).
Но мы не будем углубляться в распределения, а рассмотрим самые простые методы. А так как разглядывать их в таблице совершенно неинтересно, давайте попрактикуемся и выясним, как может быть использован тот или иной метод в деле.
Но прежде чем это сделать и иметь возможность полноценно использовать модуль, его надо импортировать. Делается это предельно просто: нужно прописать в начале кода import random .
random.random
У модуля random есть одноименный метод-тезка — функция random. Она возвращает случайное число в диапазоне 0 — 1.0:
print(«Выводим случайное число с помощью random.random():»)
Если вы скопируете этот простейший код себе (можно использовать любой онлайн-компилятор), вы получите другое число.
Также вывести можно не одно, а, к примеру, три (three) числа (используется for i in range), причем прекрасным решением будет ограничить вывод до двух знаков после запятой (за это отвечает ‘%.2f’):
print(«Выводим 3 случайных числа; не более 2 знаков после запятой:»)
print([‘%.2f’ % random.random() for i in range(3)])
random.seed
Метод seed может показаться более сложным для понимания. Фишка в том, что, как уже было сказано выше, используется генератор псевдослучайных чисел, то есть выдача этих чисел происходит в соответствии с алгоритмом. Алгоритм вычисляет значение на основе другого числа, но это число берется не с потолка — оно вычисляется на основании текущего системного времени. В результате, если вы будете пробовать на своем компьютере один из кодов, рассмотренных выше, вы будете получать каждый раз новые числа.
Если же задействовать seed с одним и тем же параметром, то вычисление будет производиться на основании этого параметра. Итог — на выходе будут получаться одинаковые «случайные» значения. Возьмем для примера параметр 5 и сделаем так, чтобы метод отработал дважды:
random.uniform
С uniform все проще: возвращается псевдослучайное вещественное число, находящееся в определенном диапазоне, который указывается разработчиком:
print(«Находим число с плавающей точкой в заданном диапазоне:»)
random.randint
Randint в Python тоже позволяет вернуть псевдослучайное число в определенном диапазоне, но тут уже речь идет о целом значении (int, integer):
print(«Используем randint для генерации целого числа int из диапазона:»)
random.randrange
Следующий метод, называемый randrange, похож на предыдущий randint, но тут, кроме диапазона целых значений int, можно добавить еще и шаг выборки (в качестве третьего параметра):
print(«Генерируем случайное целое число в заданном диапазоне с шагом»)
print(random.randrange(10, 100, 2))
Судя по результату ниже и в соответствии с выбранным диапазоном от 10 до 100, установив шаг 2, мы будем получать лишь четные значения:
random.choice
Применение choice позволяет вернуть элемент из какой-нибудь последовательности — это может быть список, строка, кортеж.
И это уже интереснее, т. к. напрашивается аналогия с броском игрального кубика:
list = [1, 2, 3, 4, 5, 6]
print(«Выборка одного элемента из списка с помощью choice:»)
Ура, выпало шесть!
Проверьте, повезет ли так и вам. Но вообще, перечень может состоять из других цифр и даже слов.
Сыграйте в игру и попробуйте погадать, какой язык программирования вам лучше учить в Otus:
print(«Какой язык программирования будешь учить?»)
Sample и choices
Начиная с Python 3.6, появился метод choices. Его отличие в том, что он позволяет сделать выборку нескольких элементов из последовательности, а вот сколько именно будет значений, можно указать. В отличие от схожего метода sample, в choices возможно получение одинаковых цифр.
Вернемся к нашему виртуальному кубику. Вот работа sample:
list = [1, 2, 3, 4, 5, 6]
print («Выборка двух случайных значений:»)
Все бы ничего, но этот метод будет постоянно выводить 2 разных значения. Если же мы захотим сымитировать бросок двух игральных кубиков, код придется менять, ведь в реальной жизни выкинуть дубль все-таки можно. Но зачем менять код, если есть choices? Он обеспечит вывод двух случайных значения из заданного диапазона, причем они могут повторяться. Это уже максимально приближено к реальному броску двух кубиков, причем профит достигается и за счет того, что объем кода не увеличивается. Ради интереса мы его даже уменьшили — оптимизировали (List превратился в l, да и лишний текст выкинули):
Кстати, вот и дубль — результат равен [6, 6], причем всего лишь с 5-й попытки (можете поверить на слово):
Правда, тут нюанс: пришлось сменить онлайн-компилятор, так как на предыдущем компиляторе Python версии 3.6 не поддерживался.
random.shuffle
Функция с интересным названием shuffle может перемешивать последовательность, меняя местами значения (она не подходит для неизменяемых объектов). Здесь важна именно последовательность выпадения определенных значений, как в лото.
print («Крутим барабан и достаем шары наугад: «, list)
Остается добавить, что английское слово shuffle означает «тасовать, перемешивать». Как тут не вспомнить картежного шулера или лопату-шуфлю для перемешивания бетонного раствора. Но это так, для общего развития.