Как вычислить центр тяжести плоской ограниченной фигуры
с помощью двойного интеграла?
Данная статья посвящена наиболее распространённому на практике приложению двойного интеграла – вычислению центра тяжести плоской ограниченной фигуры. Многие читатели интуитивно понимают, что такое центр тяжести, но, тем не менее, рекомендую повторить материал одного из уроков аналитической геометрии, где я разобрал задачу о центре тяжести треугольника и в доступной форме расшифровал физический смысл этого термина.
В самостоятельных и контрольных заданиях для решения, как правило, предлагается простейший случай – плоская ограниченная однородная фигура, то есть фигура постоянной физической плотности – стеклянная, деревянная, оловянная чугунные игрушки, тяжёлое детство и т.д. Далее по умолчанию речь пойдёт только о таких фигурах =)
Первое правило и простейший пример: если у плоской фигуры есть центр симметрии, то он является центром тяжести данной фигуры. Например, центр круглой однородной пластины. Логично и по-житейски понятно – масса такой фигуры «справедливо распределена во все стороны» относительно центра. Верти – не хочу.
Однако в суровых реалиях вам вряд ли подкинут сладкую эллиптическую шоколадку, поэтому придётся вооружиться серьёзным кухонным инструментом:
Координаты центра тяжести плоской однородной ограниченной фигуры рассчитываются по следующим формулам:
, или:
, где – площадь области (фигуры); или совсем коротко:
Интеграл будем условно называть «иксовым» интегралом, а интеграл – «игрековым» интегралом.
Примечание-справка: для плоской ограниченной неоднородной фигуры, плотность которой задана функцией , формулы более сложные:
, где – масса фигуры; в случае однородной плотности они упрощаются до вышеприведённых формул.
На формулах, собственно, вся новизна и заканчивается, остальное – это ваше умение решать двойные интегралы, кстати, сейчас предоставляется прекрасная возможность потренироваться и усовершенствовать свою технику. А совершенству, как известно, нет предела =)
Закинемся бодрящей порцией парабол:
Найти координаты центра тяжести однородной плоской фигуры, ограниченной линиями .
Решение: линии здесь элементарны: задаёт ось абсцисс, а уравнение – параболу, которая легко и быстро строится с помощью геометрических преобразований графиков:
– парабола , сдвинутая на 2 единицы влево и на 1 единицу вниз.
Я выполню сразу весь чертёж с готовой точкой центра тяжести фигуры:
Правило второе: если у фигуры существует ось симметрии, то центр тяжести данной фигуры обязательно лежит на этой оси.
В нашем случае фигура симметрична относительно прямой , то есть фактически мы уже знаем «иксовую» координату точки «эм».
Также обратите внимание, что по вертикали центр тяжести смещён ближе к оси абсцисс, поскольку там фигура более массивна.
Полезная рекомендация: ещё до вычислений постарайтесь определить примерное расположение центра тяжести «на глазок» – это поможет проверить полученные значения на предмет явных ошибок.
Да, возможно, ещё не все до конца поняли, что такое центр тяжести: пожалуйста, поднимите вверх указательный палец и мысленно поставьте на него заштрихованную «подошву» точкой . Теоретически фигура не должна упасть.
Координаты центра тяжести фигуры найдём по формулам , где .
Порядок обхода области (фигуры) здесь очевиден:
Внимание! Определяемся с наиболее выгодным порядком обхода один раз – и используем его для всех интегралов!
1) Сначала вычислим площадь фигуры. Ввиду относительной простоты интеграла решение можно оформить компактно, главное, не запутаться в вычислениях:
Смотрим на чертёж и прикидываем по клеточкам площадь. Получилось около дела.
2) Иксовая координата центра тяжести уже найдена «графическим методом», поэтому можно сослаться на симметрию и перейти к следующему пункту. Однако так делать всё-таки не советую – велика вероятность, что решение забракуют с формулировкой «используйте формулу».
В этой связи координату лучше рассчитать формально. Вычислим «иксовый» интеграл:
Заметьте, что здесь можно обойтись исключительно устными вычислениями – иногда совсем не обязательно приводить дроби к общему знаменателю или мучить калькулятор.
Таким образом:
, что и требовалось получить.
3) Найдём ординату центра тяжести. Вычислим «игрековый» интеграл:
А вот тут без калькулятора пришлось бы тяжко. На всякий случай закомментирую, что в результате умножения многочленов получается 9 членов, причём некоторые из них подобны. Подобные слагаемые я привёл устно (как это обычно принято делать в похожих случаях) и сразу записал итоговую сумму .
В результате:
, что очень и очень похоже на правду.
На заключительном этапе отмечаем на чертеже точку . По условию не требовалось ничего чертить, но в большинстве задач мы волей-неволей вынуждены изобразить фигуру. Зато есть безусловный плюс – визуальная и довольно эффективная проверка результата.
Ответ:
Следующие два примера для самостоятельного решения.
Найти координаты центра тяжести однородной плоской фигуры, ограниченной линиями
Кстати, если вы представляете, как расположена парабола и увидели точки, в которых она пересекает ось , то здесь и на самом деле можно обойтись без чертежа.
Найти центр тяжести однородной плоской фигуры, ограниченной линиями
В случае затруднений с построением графиков, изучите (повторите) урок о параболах и/или Пример №11 статьи Двойные интегралы для чайников.
Примерные образцы решений в конце урока.
Кроме того, десяток-другой похожих примеров можно найти в соответствующем архиве на странице Готовые решения по высшей математике.
Ну а я не могу не порадовать любителей высшей математики, которые часто просят меня разбирать и трудные задачки:
Найти центр тяжести однородной плоской фигуры, ограниченной линиями . Фигуру и её центр тяжести изобразить на чертеже.
Решение: условие данной задачи уже категорично требует выполнения чертежа. А ведь требование не настолько и формально! – эту фигуру способен представить в уме даже человек со средним уровнем подготовки:
Прямая рассекает круг на 2 части, и дополнительная оговорка (см. линейные неравенства) указывает на то, что речь идёт именно о маленьком заштрихованном кусочке.
Фигура симметрична относительно прямой (изображена пунктиром), поэтому центр тяжести должен лежать на данной линии. И, очевидно, что его координаты равны по модулю. Отличный ориентир, практически исключающий ошибочный ответ!
Теперь плохая новость =) На горизонте маячит малоприятный интеграл от корня, который мы подробно разобрали в Примере №4 урока Эффективные методы решения интегралов. И кто его знает, что там нарисуется ещё. Казалось бы, ввиду наличия окружности выгодно перейти к полярной системе координат, однако не всё так просто. Уравнение прямой преобразуется к виду и интегралы тоже получатся не сахарные (хотя фанаты тригонометрических интегралов оценят). В этой связи осмотрительнее остановиться на декартовых координатах.
Порядок обхода фигуры:
1) Вычислим площадь фигуры:
Первый интеграл рациональнее взять подведением под знак дифференциала:
А во втором интеграле проведём стандартную замену:
Вычислим новые пределы интегрирования:
Весьма достоверно, едем дальше:
Здесь во 2-м интеграле опять был использован метод подведения функции под знак дифференциала. Отработайте и возьмите на вооружение эти оптимальные (по моему мнению) приёмы решения типовых интегралов.
После непростых и длительных вычислений вновь обращаем свой взор на чертёж (помним, что точки мы пока не знаем!) и получаем глубокое моральное удовлетворение от найденного значения .
3) Исходя из проведённого ранее анализа, осталось убедиться, что .
Изобразим точку на чертеже. В соответствии с формулировкой условия запишем её как окончательный ответ:
Похожее задание для самостоятельного решения:
Найти центр тяжести однородной плоской фигуры, ограниченной линиями . Выполнить чертёж.
Эта задача интереса тем, что в ней задана фигура достаточно малых размеров, и если где-нибудь допустить ошибку, то высока вероятность вообще «не попасть» в область. Что, безусловно, хорошо с точки зрения контроля решения.
Примерный образец оформления в конце урока.
Иногда бывает целесообразен переход к полярным координатам в двойных интегралах. Это зависит от фигуры. Искал-искал у себя удачный пример, но не нашёл, поэтому продемонстрирую ход решения на 1-й демо-задаче указанного выше урока:
Напоминаю, что в том примере мы перешли к полярным координатам, выяснили порядок обхода области и вычислили её площадь
Давайте найдём центр тяжести данной фигуры. Схема та же: . Значение просматривается прямо из чертежа, а «иксовая» координата должна быть смещена чуть ближе к оси ординат, поскольку там располагается более массивная часть полукруга.
В интегралах используем стандартные формулы перехода:
Правдоподобно, скорее всего, не ошиблись.
Примечание: интеграл подробно разобран в Примере №9 урока Интегралы от тригонометрических функций.
, что и требовалось получить.
Как-то так невзначай на этой странице уместились 17 двойных интегралов, что является полнейшим безобразием, по причине того, что за окном жаркие деньки июня, которые совсем не располагают к учёбе.
Успешной сдачи сессии!
Решения и ответы:
Пример 2: Решение: выполним чертёж:
Координаты центра тяжести фигуры найдём по формулам , где .
Порядок обхода области:
1) Вычислим площадь фигуры:
2) Найдём абсциссу центра тяжести.
3) Найдём ординату центра тяжести.
Ответ:
Пример 3: Решение: выполним чертеж:
Выберем следующий порядок обхода фигуры:
Найдём центр тяжести . Используем формулы , где
1) Вычислим площадь фигуры:
2) Найдём абсциссу центра тяжести.
3) Найдём ординату центра тяжести.
(интеграл от нечетной функции по симметричному относительно нуля отрезку)
Ответ:
Пример 5: Решение: выразим функции в явном виде:
Выполним чертеж:
Выберем следующий порядок обхода фигуры:
По соответствующим формулам найдём координаты центра тяжести данной фигуры.
В первом интеграле проведем замену:
Новые пределы интегрирования:
Ответ:
Автор: Емелин Александр
(Переход на главную страницу)
Contented.ru – онлайн школа дизайна
SkillFactory – получи востребованную IT профессию!
Положения центра тяжести некоторых фигур
Прямоугольник. Так как прямоугольник имеет две оси симметрии , то его центр тяжести находится на пересечении осей симметрии, т.е. в точке пересечения диагоналей прямоугольника.
Треугольник. Центр тяжести лежит в точке пересечения его медиан. Из геометрии известно, что медианы треугольника пересекаются в одной точке и делятся в отношении 1:2 от основания.
Круг. Так как круг имеет две оси симметрии, то его центр тяжести находится на пересечении осей симметрии.
Полукруг. Полукруг имеет одну ось симметрии, то центр тяжести лежит на этой оси. Другая координата центра тяжести вычисляется по формуле: .
Многие конструктивные элементы изготавливают из стандартного проката – уголков, двутавров, швеллеров и других. Все размеры, а так же геометрические характеристики прокатных профилей это табличные данные, которые можно найти в справочной литературе в таблицах нормального сортамента (ГОСТ 8239-89, ГОСТ 8240-89).
Пример 1. Определить положение центра тяжести фигуры, представленной на рисунке.
Решение:
Выбираем оси координат, так чтобы ось Ох прошла по крайнему нижнему габаритному размеру, а ось Оу – по крайнему левому габаритному размеру.
Разбиваем сложную фигуру на минимальное количество простых фигур:
Вычисляем площадь каждой простой фигуры, её координаты центра тяжести. Результаты вычислений заносим в таблицу
Площадь фигуры А,
Координаты центра тяжести
=20·10=200
Вычисляем координаты центра тяжести фигуры по формулам:
Ответ: С(14,5; 4,5)
Пример 2. Определить координаты центра тяжести составного сечения, состоящего из листа и прокатных профилей.
Решение.
Выбираем оси координат, так как показано на рисунке.
Обозначим фигуры номерами и выпишем из таблицы необходимые данные:
– швеллер №10; высота h=100 мм; ширина b=46 мм; площадь сечения ;
— двутавр №16; высота h=160 мм; ширина b=81 мм; площадь сечения ;
– лист 5х100; толщина 5 мм; ширина 100 мм.
Вычисляем координаты центра тяжести каждой фигуры. Составное сечение симметрично, поэтому центр тяжести находится на оси симметрии и координата . Результаты вычислений заносим в таблицу
Площадь фигуры А,
Координаты центра тяжести
=10,9
Вычисляем координаты центра тяжести фигуры по формулам:
Ответ: С(0; 10)
Лабораторная работа №1 «Определение центра тяжести составных плоских фигур»
Цель: Определить центр тяжести заданной плоской сложной фигуры опытным и аналитическим способами и сравнить их результаты.
Порядок выполнения работы
Начертить в тетрадях свою плоскую фигуру по размерам, с указанием осей координат.
Определить центр тяжести аналитическим способом.
Разбить фигуру на минимальное количество фигур, центры тяжести которых, мы знаем, как определить.
Указать номера площадей и координаты центра тяжести каждой фигуры.
Вычислить координаты центра тяжести каждой фигуры.
Вычислить площадь каждой фигуры.
Вычислить координаты центра тяжести всей фигуры по формулам (положение центра тяжести нанести на чертеж фигуры):
;
Записать координаты центра тяжести.
Определить центр тяжести опытным путем на установке для определения координат центра тяжести.
Вырезать данную фигуру из тонкого картона.
Определить центр тяжести своей фигуры на установке.
Установка для опытного определения координат центра тяжести способом подвешивания состоит из вертикальной стойки 1 (см. рис.), к которой прикреплена игла 2. Плоская фигура 3 изготовлена из картона, в котором легко проколоть отверстие. Отверстия А и В прокалываются в произвольно расположенных точках (лучше на наиболее удаленном расстоянии друг от друга). Плоская фигура подвешивается на иглу сначала в точке А, а потом в точке В. При помощи отвеса 4, закрепленного на той же игле, на фигуре прочерчивают карандашом вертикальную линию, соответствующую нити отвеса. Центр тяжести С фигуры будет находиться в точке пересечения вертикальных линий, нанесенных при подвешивании фигуры в точках А и В.
Приклеить фигуру с определенным центром тяжести в тетрадь.
Записать значения координат центра тяжести, найденных при подвешивании фигур:
Сравнить результаты: ;
Сделать вывод:
Задание для лабораторной работы. Номер схемы соответствует Вашему порядковому номеру в журнале.
Центр масс
Центр масс — это геометрическая точка, положение которой определяется распределением массы в теле, а перемещение характеризует движение тела или механической системы как целого.
На странице -> решение задач по теоретической механике собраны решения задач и заданий с решёнными примерами по всем темам теоретической механики.
Центр масс
Центр масс — это некоторое положение, определяемое относительно объекта или системы объектов и это среднее положение всех частей системы, взвешенное в соответствии с их массами.
Центр параллельных сил
Если на тело действует система параллельных сил ,
.
, то точка
, через которую проходит равнодействующая
этой системы сил, называется центром параллельных сил (рис.9.1).
Координаты центра параллельных сил определяются по зависимостям:
где — координаты точек приложения сил
.
Центр параллельных сил имеет ту особенность, что через него обязательно будет проходить линия действия равнодействующей при вращении линий действия всех сил системы вокруг точек их приложения на один и тот же угол в одну и ту же сторону. Модули сил при вращении не должны меняться.
Центр тяжести
Если твердое тело находится возле поверхности Земли, то на каждую материальную часть этого тела действует сила тяжести , которая направлена к центру Земли. Поскольку размеры тела небольшие по сравнению с размерами Земли, то образованную систему сил можно рассматривать как параллельную. Равнодействующая этой параллельной системе сил
, которая равна их сумме, называется тяжестью тела, а центр этой системы — точка
называется центром тяжести тела (рис.9.2).
Координаты центра тяжести твердого тела можно определить как координаты центра параллельных сил:
где — сила тяжести элементарной частицы тела;
— тяжесть тела;
— координаты центра тяжести;
— координаты элементарной частицы тела.
Если тело однородное, то есть удельный вес не меняется по объему , то:
где — объем тела;
— объем элементарной частицы.
Тогда формулы для определения координат центра тяжести твердого тела приобретут вид:
Положение центра тяжести однородного тела зависит только от формы объема, что занимает тело, и называется центром тяжести этого объема.
Если однородное тело имеет форму тонкой пластины, то его можно рассматривать как материальную плоскую фигуру. В этом случае положение центра тяжести плоской фигуры определяется двумя координатами и
и зависит от формы площади фигуры:
где — площадь элементарной части плоской фигуры;
— площадь плоской фигуры.
Центр тяжести однородной пластины называется центром тяжести плоской фигуры.
Если выбранный элементарный объем (площадь элементарной площадки в плоском случае) направить к нулю, то формулы для вычисления координат центра тяжести приобретут интегральный вид:
а) для однородного твердого тела:
где — объем тела, интегрирование выполняется по всему объему тела;
б) для однородной поверхности:
где — площадь поверхности, интегрирование выполняется по всей поверхности тела;
в) для однородной плоской фигуры, лежащей в плоскости xy:
г) для однородной линии:
где — длина линии, интегрирование выполняется по всей длине линии.
Центры тяжести некоторых плоских однородных фигур
Для упрощения определения центра тяжести используются следующие вспомогательные правилами:
1. Если тело имеет плоскость симметрии, то центр тяжести лежит на этой плоскости.
2. Если тело симметрично относительно оси, то центр тяжести лежит на этой оси.
3. Если тело симметрично относительно точки, то центр тяжести лежит в центре симметрии.
4. Если тело состоит из нескольких частей, центры тяжести которых можно определить, то центр тяжести такого тела находят как центр тяжести нескольких материальных точек, а именно тех, в которых расположены весы каждой отдельной части тела.
Центр тяжести дуги окружности
Центр тяжести дуги окружности (рис.9.3) лежит на ее оси симметрии и на расстоянии
от центра окружности:
где — радиус окружности;
— половина центрального угла, опирающегося на дугу
.
Центр тяжести кругового сектора
Центр тяжести кругового сектора лежит на оси симметрии и имеет координаты:
где — радиус окружности;
— половина центрального угла сектора.
Центр тяжести кругового сегмента
Центр тяжести кругового сегмента лежит на оси симметрии сегмента и имеет координаты:
где — радиус окружности;
— половина центрального угла сегмента.
Центр тяжести треугольника
Центр тяжести треугольника (рис. 9.6) лежит в точке пересечения его медиан — на расстоянии 1/3 каждой медианы от соответствующего основания треугольника.
Центр тяжести трапеции
Центр тяжести трапеции (рис.9.7) с основаниями и
и высотой
лежит на прямой
, которая соединяет середины основ.
Расстояния и
центра тяжести
площади трапеции от ее основ определяются по формулам:
Наиболее распространенный способ определения положения центра тяжести однородного тела сложной формы заключается в том, что его разбивают на такие части, положение центров тяжести которых известно, или может быть легко определено.
Например, однородную плоскую фигуру (рис.9.8) разбивают на три части 1,2 и 3, положения центров тяжести которых, можно определить.
Координаты центра тяжести фигуры определяются по формулам:
где — координаты центра тяжести
первой части плоской фигуры;
— площадь первой части и т.п.
Этим способом удобно пользоваться и при определении положения центра тяжести плоской фигуры, из которой вырезана некоторая часть (рис.9.9).
В этом случае площадь плоской фигуры можно записать в виде разницы площадей сплошной фигуры 1 (площадь положительная) и вырезанной части 2 (площадь отрицательная), то есть .
Координаты центра тяжести фигуры равны:
где — координаты центра тяжести сплошной фигуры 1, площадь которой равна
;
— координаты центра тяжести вырезанной части 2, площадь которой равна —
.
Первый из этих методов имеет название «метод разбиения», второй — «метод дополнения», или «метод отрицательных масс». В общем случае формулы для определения центра тяжести плоской фигуры имеют вид:
где — площадь всей фигуры.
Примеры решения задач на тему: Центр масс
Задача № 1
Найти центр тяжести двутаврового профиля, размеры которого в сантиметрах указаны на рис.9.10.
Решение. Поскольку форма сечения имеет ось симметрии, ось направим вдоль оси симметрии, а ось
перпендикулярно ей.
В силу симметричности профиля относительно оси центр тяжести будет лежать на этой оси, то есть
Линиями и
поделим профиль на три прямоугольника 1, 2 и 3.
Запишем уравнение для определения абсциссы центра тяжести площади:
где — абсциссы центров тяжести прямоугольников 1, 2, 3;
— площади этих прямоугольников.
Поскольку центры тяжести прямоугольников и
лежат на пересечении их диагоналей, то (рис.9.10):
Площади этих прямоугольников соответственно равны:
Таким образом, центр тяжести фигуры лежит в точке с координатами:
Ответ:
Задача № 2
Найти координаты центра тяжести поперечного пересечения разностороннего угольника (рис.9.11), полки которого имеют ширину и толщину
Решение. Разделим пересечение линией на два прямоугольника
и
, центры тяжести которых лежат на пересечении соответствующих диагоналей.
Запишем формулы для координат и
центра тяжести пересечения:
где и
— координаты центров тяжести прямоугольников 1 и 2;
,
— площади прямоугольников 1 и 2.
С рис.9.11 видим, что
Ответ:
Задача № 3
Определить положение центра тяжести плоской фигуры (рис.9.12), ограниченной полуокружностью радиуса
и двумя прямыми равной длины
и
, причем
Решение. Данная площадь имеет ось симметрии, вдоль которой направим ось . Поскольку центр тяжести площади
лежит на оси симметрии, то
Разделим площадь линией
на две части: полуокружность
и равнобедренный треугольник
.
Абсцисса центра тяжести площади будет равняться:
где — координата центра тяжести половины круга
;
— координата центра тяжести треугольника
;
,
— площади половины круга и треугольника.
Для определения воспользуемся приведенными в разделе 9.3.2 координатами центра тяжести кругового сектора
В случае половины круга
Площадь половины круга равна:
Центр тяжести треугольника лежит на пересечении его медиан (раздел 9.3.4). Поскольку треугольник равнобедрен, то линия
будет его медианой и расстояние
будет равняться третьей части от
:
Площадь треугольника равна:
Подставив найденные значения ,
,
и
в уравнение для
, получим:
Ответ:
Задача № 4
Найти координаты центра тяжести квадратной пластины с вырезом в виде сегмента радиуса (рис.9.13), если
Решение. Осью симметрии рассматриваемой фигуры будет диагональ прямоугольника
Поэтому направим ось вдоль этой линии, а ось
— перпендикулярно (рис.9.13).
Центр тяжести пластины будет лежать на оси , то есть
Площадь фигуры можно представить как разницу площадей квадрата
(положительная площадь) и сектора
(отрицательная площадь).
Абсцисса центра тяжести фигуры будет равняться:
где — абсцисса центра тяжести квадрата
;
— абсцисса центра тяжести сектора
;
и
— площади квадрата и сектора.
Для квадрата получим:
Как следует из рис. 9.13, равняется
где — расстояние от точки
к центру тяжести кругового сектора
.
Для кругового сектора (раздел 9.3.2) получим:
Поскольку и
, то
Таким образом, абсцисса равняется:
Площадь кругового сектора :
Подставив значение ,
,
и
в формулу для
, получим:
Ответ:
Задача № 5
Найти координаты центра тяжести площади, ограниченной (рис.9.14) правой веткой параболы , осью
и прямой
Решение. На расстоянии от оси
выделяем элементарную площадку
шириной
(заштрихованная область).
Площадь выделенной элементарной площадки будет равняться:
Площадь фигуры, что ограничена заданными линиями:
Поскольку точка представляет собой пересечение параболы
и прямой
, то
Абсцисса центра тяжести
Для определения координаты выделим элементарную площадку
шириной
на расстоянии
от оси
.
Площадь выделенной площадки:
Ордината центра тяжести:
Ответ:
Способы определения координат центра тяжести тела
Существует несколько способов определения координат центра тяжести тел. среди них различают: метод симметрии, метод разбиения и дополнения, экспериментальные способы.
Рассмотрим последовательно эти способы.
Метод симметрии
Если однородное тело имеет плоскость, ось или центр симметрии, то его центр тяжести лежит соответственно в плоскости симметрии, или на оси симметрии, или в центре симметрии.
Таким образом, центр тяжести однородных симметричных тел, таких как кольца,
прямоугольные пластины, прямоугольные параллелепипеды, шары и другие тела, которые
имеют центр симметрии, расположенный в геометрических центрах (центры симметрии) этих тел.
Метод разбиения
Если тело можно разбить на конечное число таких частей, для каждой из которых положение центра тяжести нетрудно определяется, то координаты центра тяжести всего тела можно определить непосредственно по формулам выше. Причем количество слагаемых в числителе каждого из указанных выражений будет равно количеству частей, на которое разбивается тело.
Приведем пример определения центра тяжести тела методом разбиения его на отдельные тела, центры тяжести которых известны.
Пример:
Определить координаты центра тяжести однородной пластины. Размеры в
мм заданные на рис. 1.64
Решение.
Выберем оси координат x и y. Разбиваем пластину на отдельные прямоугольные части. Для каждого прямоугольника проводим диагонали, точки пересечения которых c1, c2 и c3 соответствуют центрам веса каждого прямоугольника. В принятой системе координат нетрудно получить значение координат этих точек. А именно: c1 (–1,1), c2 (1,5), c3 (5,9). Площади каждого тела соответственно равны: I — s1 = 4 см 2 ; II — s2 = 20 см 2 ; III — s3 = 12 см 2 . Площадь всей пластины равна: S = s1 + s2 + s3 = 36 см 2 .
Для определения координат центра тяжести заданной пластины используем выражение выше. Подставив значения всех известных величин в уравнения, получим
По вычисленным значениям координат центра тяжести пластины можно обозначить точку C на рисунке. Как видим, центр тяжести (геометрическая точка) пластины расположен за ее пределами.
Метод дополнения
Способ, о котором говорится далее, является некоторым случаем способа разбиения. Он может применяться к телам, которые имеют вырезы, полости, причем без учета выреза, или вырезанной части тела положение центра тяжести тела известно. Рассмотрим пример применения такого метода.
Пример. Определить положение центра тяжести круглой пластины радиусом R, имеет круговое отверстие радиуса r (рис. 1.65). Расстояние C1C2 = a.
Решение.
Как видно из рисунка, центр тяжести пластины находится на оси симметрии пластины x, то есть на прямой, проходящей через точки C1 и C2. Таким образом, для определения положения центра тяжести этой пластины необходимо вычислить только одну координату xC, поскольку вторая координата yC равна нулю. Покажем оси координат x, y. Примем, что пластина состоит из двух тел — с полного круга (без учета выреза) и тела,
образовано вырезом. В принятой системе координаты x для указанных тел будут равны: x1 = 0; x2 = C1C2 = a. Площади тел равны: Общая площадь всего тела будет равна физической разницы между площадями первого и второго тел, а именно
Для определения неизвестной координаты центра тяжести
заданной пластины используем первое уравнение выражения.
Подставив значения всех известных величин в это уравнение, получим
Таким образом, значение координаты xC отрицательное, а потому, поскольку вторая координата 0 yC = 0, то центр тяжести пластины C размещен на оси x слева от точки C1.
Экспериментальные способы
Эти способы нашли широкое применение при отыскании положения центра тяжести тел сложных форм и конфигураций, для которых другие способы почти непригодны вследствие громоздкости и сложности. К таким телам, в первую очередь, следует отнести комбайны, тракторы, сложные сельскохозяйственные машины и орудия. При применении экспериментальных способов отыскания положения
центра тяжести наиболее широко используют метод подвешивания и метод взвешивания тел.
При применении метода подвешивания тело на тросе подвешивают за различные его точки. Направление троса, будет давать каждый раз направление силы веса тела. Тогда точка пересечения этих направлений и дает положение центра тяжести тела.
Использование второго метода — взвешивание требует измерения веса всего тела, а также отдельных его частей. Рассмотрим пример применения этого метода.
Пример.
Определим продольную координату центра тяжести трактора, у которого продольная база составляет l (рис. 1.66).
Решение.
Сначала поставим на платформу весов задние колеса трактора, как это показано на рисунке. Итак, определяем силу давления задних колес на платформу, или реакцию . Аналогично определяем вес переднего моста, или реакцию
. Вполне понятно, что сумма этих реакций равна общему весу трактора, а именно:
Теперь составим алгебраическую сумму моментов всех сил относительно точки A. Она равна
Откуда определяем продольную координату центра тяжести:
xC = .
Для определения поперечной координаты центра тяжести трактора необходимо знать реакции левых колес (переднего и заднего) и правых, а также поперечную базу трактора. Дальше аналогичным выражением определяется эти координаты центра тяжести.
Центры тяжести некоторых однородных тел
Определим далее координаты центров тяжести некоторых простых однородных тел.
Центр тяжести дуги окружности
Рассмотрим дугу AB окружности радиусом R, в которой центральный угол OAB равен 2α (радиан) (рис. 1.67). Покажем оси координат x, y начало которых разместим в точке O. Вследствие того, что дуга имеет ось симметрии Ox, то центр ее тяжести будет расположен именно на этой оси (yC = 0). Остается только вычислить координату xC.
Используем для вычисления этой координаты первое уравнение выражения, а именно
Определим составляющие, которые необходимо подставить в это уравнение. Для этого выделим на дуге AB элемент M M1 длиной dl, равной:
Если φ — угол, определяющий положение элемента M M1 на дуге AB, то координата x элемента M M1 будет равна:
Общая длина дуги AB равна:
Подставим эти значения в первое уравнение выражения. При этом считается, что интеграл в числителе данного выражения должен быть определенным по всей длине дуги. Будем иметь:
Таким образом, координата xC будет равняться
xC = .
Центр тяжести треугольника
Есть произвольный треугольник, вершины которого в принятой системе координат Oxy соответствуют точкам с координатами A1 (x1, y1), A2 (x2, y2), A3 (x3, y3) (рис. 1.68). Если провести прямые, которые будут параллельны основе A1A3 и провести их достаточное количество, то вся площадь треугольника будет состоять из полос бесконечно малой ширины, центры тяжести которых будут размещены посередине каждой полосы, а потому и центр тяжести треугольника будет расположенный на его медиане. А если провести линии, параллельные другой стороне треугольника, то и в этом случае центр тяжести будет размещен на соответствующей медиане. Таким образом, совершенно очевидно, что центр тяжести треугольника C будет расположен в точке пересечения его медиан.
Определим координаты этой точки. По курсу аналитической геометрии известно, что точка пересечения медиан треугольника в принятой системе координат определяется такими зависимостями
Полезно также знать, что
Центр тяжести сектора
Рассмотрим круговой сектор OAB радиуса R, центральный угол которого равен 2α (радиан) (рис. 1.69). Центр тяжести сектора, вполне очевидно, лежит на оси его симметрии, то есть на биссектрисе угла AOB. Эту биссектрису примем за ось x и найдем на этой оси положение центра C. Разобьем площадь сектора на бесконечно большое число элементарных секторов с центральными углами ∆φ.
Будем рассматривать каждый сектор как треугольник с основанием R · ∆φ и высотой R. Центр тяжести каждого треугольника расположен на расстоянии от центра сектора. Таким образом, центры тяжести всех треугольников расположены на дуге A´B´. Итак, если 0 ∆φ → 0, то центры тяжести образуют дугу AB, тогда необходимо найти центр тяжести дуги A´B´. Используем формулу, по которой определяется центр тяжести дуги окружности радиусом r:
Тогда учитывая, что
Услуги по теоретической механике:
Учебные лекции:
Присылайте задания в любое время дня и ночи в ➔
Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.
Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.
Сайт предназначен для облегчения образовательного путешествия студентам очникам и заочникам по вопросам обучения . Наталья Брильёнова не предлагает и не оказывает товары и услуги.
Центр тяжести в теоретической механике
При рассмотрении движения тел, особенно таких, как самолеты, ракеты, космические корабли, важное значение имеет понятие центра тяжести.
Определения и формулы для вычисления центров тяжести
Для введения понятия центра тяжести разобьем мысленно рассматриваемое тело на достаточно большое число малых по сравнению с телом или элементарных его частей произвольной формы. Силу тяжести элементарной частицы тела с индексом
Радиус-вектор центра тяжести тела вычисляем как радиус-вектор центра параллельных сил (рис. 88) по формуле
где — радиус-вектор точки приложения силы тяжести элементарной части тела, принятой за точку;
— сила тяжести элементарной частицы;
— сила тяжести всего тела;
— число частей, на которое мысленно разбито все тело. Центр тяжести является точкой приложения равнодействующей силы тяжести, если силы тяжести отдельных его частей считать системой параллельных сил.
Рис. 88
Если в (1) перейти к пределу, увеличивая число элементарных частей до бесконечности, то после замены
дифференциалом
, а суммы — интегралом получим
где — радиус-вектор элементарной части тела, принятой за точку. В проекциях на оси координат из (1) и (1′) получаем:
где — координаты центра тяжести;
— координаты точки приложения силы тяжести
.
Используя понятие центра тяжести тела, введем понятие его центра масс. Силы тяжести элементарных частей тела и всего тела можно выразить через их массы и
и ускорение силы тяжести
с помощью формул
Подставляя эти значения сил тяжести в (1) и (1′) после сокращения на , которое принимаем одинаковым для всех частей тела, имеем
По формулам (2) и (2′) определяют радиус-вектор центра масс тела. Центр масс обычно определяют независимо от центра тяжести как геометрическую точку, радиус-вектор, которой вычисляется по формулам (2) или (2′). В проекциях на оси координат из (2) и (2′) получаем:
где — координаты центра масс тела.
Для однородного тела силу тяжести элементарной частицы тела и ее массу можно вычислить по формулам
где — объем элементарной частицы тела;
и
— соответственно удельный вес и плотность тела. Сила тяжести и масса всего тела
где — объем тела. Подставляя эти значения в (2) и (2′), после сокращения на
и
соответственно получим формулы
по которым определяют центр тяжести объема тела.
Если тело имеет форму поверхности, т. е. один из размеров мал по сравнению с двумя другими, как, например, у тонкого листа железа, то имеем
где — удельный вес;
— площадь элементарной частицы поверхности;
— площадь всей поверхности. После сокращения на
для однородной поверхности получим следующие формулы для определения центра тяжести ее площади:
Для однородных тел типа проволоки, у которых два размера малы по сравнению с третьим, можно определить радиус-вектор центра тяжести длины линии по формулам
где — длина элемента линии;
—общая длина линии, центр тяжести которой определяется.
Методы определения центров тяжести (Центров масс)
Метод симметрии
При определении центров тяжести широко используется симметрия тел. Докажем, что для однородного тела, имеющего плоскость симметрии, центр тяжести находится в плоскости симметрии. Для доказательства выберем начало координат в плоскости симметрии тела и одну из осей координат, ось направим перпендикулярно плоскости симметрии, а две других оси расположатся в плоскости симметрии (рис. 89). Каждая частица массой
, находясь по одну сторону плоскости симметрии, имеет симметричную частицу такой же массы по другую сторону этой плоскости. Координаты
у симметричных частиц одинаковы при сделанном выборе осей координат, а координаты по оси
отличаются только знаком. Для координаты центра масс
имеем следующее выражение:
Разбивая сумму в числителе на две по симметричным частям тела, получаем, что
так как симметричные части тела 1 и 2 одинаковы.
Таким образом, центр масс расположен в плоскости симметрии и для его определения достаточно вычислить только две его координаты и
в этой плоскости.
Аналогично доказывается, что для однородного тела, имеющего ось или центр симметрии, центр масс находится соответственно на оси симметрии или в центре симметрии.
Рис. 89
Метод разбиения на части (метод группировки)
Некоторые тела сложной формы можно разбить на части, центры тяжести которых известны или предварительно могут быть определены. В таких случаях центры тяжести сложных тел вычисляются по общим формулам, определяющим центр тяжести, только вместо элементарных частиц тела берутся его конечные части, на которые оно разбито. Покажем это на частном примере плоской фигуры, изображенной на рис. 90. Плоскую фигуру можно разбить на три части, центры тяжести которых ,
и
известны. Они находятся на пересечении диагоналей прямоугольников. Их радиусы-векторы обозначим
и площади
. Общая площадь сложной фигуры будет
.
Используя определение центра тяжести и производя группировку слагаемых под знаком суммы по частям фигуры, на которые она разбита, получим
Радиусы-векторы центров тяжести частей тела выразятся в такой форме:
Используя эти формулы для радиуса-вектора всей фигуры, имеем
Полученная формула имеет ту же структуру, что и формула, определяющая радиус-вектор центра тяжести тела при разбиении его на элементарные частицы, только в нее входят величины для конечных частей тела.
Рис. 90
Метод отрицательных масс
Видоизменением метода разбиения на части является метод отрицательных масс. Проиллюстрируем его тоже на примере плоской фигуры (рис. 91). Для определения центра тяжести этой фигуры ее можно разбить на три части. Можно поступить по-другому. Для этого дополним нашу фигуру до прямоугольника и примем, что этот прямоугольник с площадью и центром масс
полностью заполнен массой (имеет положительную площадь). На той части фигуры, которую добавили, следует распределить отрицательную массу (отрицательную площадь) той же плотности. Площадь этой фигуры с отрицательной массой обозначим
, а ее центр масс —
. Применяя метод разбиения на части, радиус-вектор заданной фигуры определим по формуле
В отличие от обычного метода разбиения на части в формуле (4) массы и, следовательно, площади входят со знаком минус.
Метод отрицательных масс особенно удобен при вычислении положения центров тяжести тел, имеющих отверстия.
Рис. 91
Центры тяжести простейших тел
Для определения центров тяжести тел сложной формы методом разбиения на части или методом отрицательных масс необходимо уметь вычислять центры тяжести простейших тел, на которые разбивается тело сложной формы. Рассмотрим некоторые из тел, для определения центров тяжести которых известны простые способы их нахождения или вычисления по формулам.
Прямолинейный отрезок
Центр тяжести прямолинейного однородного отрезка располагается на его середине, а неоднородного— на самом отрезке и не может находиться вне отрезка.
Площадь треугольника
Для определения центра тяжести площади треугольника разобьем его прямыми линиями, параллельными одной из его сторон , на полоски, которые в пределе можно принять за прямолинейные отрезки (рис. 92). Центры тяжести отрезков и, следовательно, полосок находятся посередине полоски. Все они расположатся на медиане
. В пределе центры тяжести полосок непрерывно покроют медиану, но не равномерно, так как площади полосок разные. В каждом центре масс полоски следует считать сосредоточенной массу или площадь этой полоски, пропорциональную длине полоски, если ширину полосок выбирать одинаковой.
Затем разобьем треугольник на полоски прямыми линиями, параллельными другой стороне треугольника. Центры их тяжести в пределе покроют неравномерно медиану
. Центры тяжести неоднородных прямолинейных отрезков
и
должны располагаться на этих отрезках, а следовательно, в точке их пересечения
, являющейся точкой пересечения медиан треугольника. Эта точка делит медианы в отношении 1 к 2, т. е. если длина медианы
равна
, то
,
.
Рис. 92
Дуга окружности
Дуга окружности определяется радиусом
и стягиваемым ею центральным углом
(рис. 93). Она имеет ось симметрии, делящую угол пополам. Центр тяжести находится на оси симметрии дуги, которую примем за ось координат
. Координату центра тяжести дуги
вычисляем по формуле
Рис. 93
В рассматриваемом случае
Подставляя эти значения в формулу для , получим
Для полуокружности . Приняв
, получим:
Площадь кругового сектора
Центр тяжести площади кругового сектора с радиусом и центральным углом
находится на оси симметрии, принимаемой за ось
(рис. 94). Разобьем сектор на элементарные треугольники одинаковой величины. Центры тяжести треугольников в пределе при увеличении их числа до бесконечности равномерно покроют дугу окружности радиусом
.
Рис. 94
Используя формулу для центра тяжести дуги окружности, получим
Для площади полукруга ,
. При
получим
Объем пирамиды и конуса
Определим положение центра тяжести объема конуса (рис. 95). Для простоты рассмотрим прямой конус, у которого высота является осью симметрии. Высотой конуса является отрезок, соединяющий его вершину с центром тяжести площади основания
. Выберем начало координат в вершине конуса, а ось
направим по оси симметрии конуса. Тогда центр тяжести объема конуса расположится на оси
.
Разобьем конус плоскостями, перпендикулярными оси , на элементарные тонкие диски толщиной
и площадью
. Все полученные сечения (диски) конуса подобны его основанию. Координату
центра тяжести объема конуса вычислим по формуле
Отношения линейных размеров сечений к соответствующим размерам основания конуса пропорциональны их расстояниям до вершины конуса. Отношения площадей пропорциональны квадратам расстояний. Приняв , получим
Таким образом, центр тяжести прямого конуса находится на расстоянии от вершины или
от основания.
Рис. 95
Это справедливо для объема любого конуса и любой пирамиды, как прямых, так и наклонных, т. е. центр тяжести объема пирамиды или конуса находится на расстоянии расстояния от центра тяжести площади основания до вершины.
Объем полушара
Полушар имеет ось симметрии, которую примем за координатную ось (рис. 96). Разобьем объем полушара на элементарные диски толщиной dx и радиусом у, который является координатой точки окружности, которая получилась от пересечения полушара с координатной плоскостью
. Уравнение этой окружности
где — радиус полушара. Для координаты центра тяжести объема полушара имеем
где — координата центра тяжести элементарного диска. Объем полушара
Объем элементарного диска
так как радиус диска . Выполняя интегрирование в пределах от
до
, получим
Таким образом, центр тяжести объема полушара находится от его центра на расстоянии
Это расстояние меньше половины радиуса полушара.
Рис. 96
Задача №1
Определить координаты центра тяжести площади плоской фигуры, имеющей размеры, указанные на рис. 97.
Рис.97
Рис. 98
Решение. Присоединим к заданной фигуре дополнительно полукруг 3 и разобьем полученную фигуру на прямоугольник 1 и треугольник 2. Получили три фигуры, две из которых имеют положительные площади (прямоугольник 1 и треугольник 2) и одна — отрицательную (полукруг 3). В выбранной системе координат для координат центра тяжести заданной фигуры имеем
где — координаты центров тяжести отдельных фигур;
— площади этих фигур.
Вычислим площади и координаты центров тяжести отдельных фигур, учитывая рис. 98 Имеем:
так как .
Подставляя полученные значения в (а), получим:
Центр тяжести плоской фигуры
постановка задачи. Найти площадь и координаты центра тяжести плоской фигуры.
1. Разбиваем фигуру на простые отдельные части, положение центров тяжести которых известны.
2. Выбираем систему координат. Вычисляем площади и координаты центров тяжести отдельных частей. Площади вырезанных частей берем со знаком минус.
3. Находим общую площадь фигуры по формуле
4. Определяем координаты центра тяжести фигуры:
Задача №2
Найти площадь и координаты центра тяжести плоской фигуры. Криволинейный участок контура является половиной окружности с центром на оси Ох (рис. 74). Размеры на рисунке даны
1. Разбиваем фигуру на простые отдельные части, положение центров тяжести которых известны.
Центр тяжести прямоугольника находится в его геометрическом центре, положение центра тяжести других фигур, встречающихся в задачах, изображено на рис. 75
Представляем фигуру в виде двух треугольников 1,2, прямоугольника 3 и выреза 4 в виде полукруга (рис. 76).
2. Вычисляем площадь (в ) и координаты центра тяжести (в м) каждого элемента:
Площадь выреза берем со знаком минус.
3.Площадь фигуры
4. Находим координаты центра тяжести всей фигуры:
Вычисления удобно свести в таблицу:
Сначала заполняем столбцы затем вычисляем статические моменты
Внизу записываем суммы столбцов, необходимые для вычисления координат центра тяжести. Таким образом
Замечание 1. Большинство задач на определение центра тяжести допускает несколько способов разбиения фигуры. Это можно использовать для проверки решения. Второй вариант разбиения фигуры в данном примере состоит из прямоугольника 3 с размерами и вырезанных из него полукруга 4 и двух треугольников 1 и 2 (рис. 77).
Замечание 2. Решение задачи в системе Maple V методом контурного интегрирования.
Пространственная стержневая система
Постановка Задачи. Найти координаты центра тяжести пространственной фигуры, состоящей из N однородных стержней.
1. Разбиваем фигуру на отдельные стержни.
2. Выбираем систему координат. Вычисляем длины и координаты центров тяжести отдельных стержней. Координаты центра прямолинейного однородного стержня вычисляем как полусумму координат его концов.
3. Находим суммарную длину стержней системы
4. Определяем координаты центра тяжести тела по формулам
Задача №3
Найти координаты центра тяжести пространственной фигуры, состоящей из шести однородных стержней (рис. 78). Даны размеры:
1. Разбиваем фигуру на шесть стержней.
2. Выбираем систему координат (рис. 78). Вычисляем длины и координаты центров тяжести отдельных стержней.
3. Находим суммарную длину стержней системы:
Промежуточные результаты удобно занести в таблицу:
4. Определяем координаты центра тяжести тела по формулам
Постановка задачи. Найти координаты центра тяжести однородного объемного тела.
1. Разбиваем тело на простые части, положение центров тяжести которых известно.
2. Выбираем систему координат. Вычисляем объемы и координаты
центров тяжести отдельных частей. Объемы вырезанных частей берем со знаком минус.
3. Находим общий объем тела по формуле
4. Определяем координаты центра тяжести тела:
Задача №4
Найти координаты центра тяжести однородного объемного тела (рис.79);
1. Разбиваем тело на пирамиду 1, параллелепипед 2 и половину цилиндра 3 (рис. 80).
2. Выбираем систему координат. Вычисляем объемы и координаты
центров тяжестей отдельных частей. Центр тяжести пирамиды 1 лежит в точке
Центр тяжести параллелепипеда 2 совпадает с его геометрическим центром:
Объем половины цилиндра 3 берем со знаком минус:
где — расстояние по оси у от оси цилиндра до его центра тяжести
.
3. Находим общий объем тела:
В общем случае объем тела, лежащего в области
можно найти, вычисляя тройной интеграл по области
а координаты центра тяжести, например,
однородного тела можно определить по формуле
см.
4. Определяем координаты центра тяжести тела:
Центр тяжести
Центр тяжести — точка, через которую проходит линия действия равнодействующей элементарных сил тяжести. Он обладает свойством центра параллельных сил. Поэтому формулы для определения положения центра тяжести различных тел имеют вид:
Если тело, центр тяжести которого нужно определить, можно отождествить с фигурой, составленной из линий (например, замкнутый или незамкнутый контур, изготовленный из проволоки, как на рис. 173), то вес каждого отрезка
можно представить в виде произведения
где d — постоянный для всей фигуры вес единицы длины материала.
После подстановки в формулы (1) вместо их значений
постоянный множитель d в каждом слагаемом числителя и знаменателя можно вынести за скобки (за знак суммы) и сократить. Таким образом, формулы для определения координат центра тяжести фигуры, составленной из отрезков линий, примут вид:
Если тело имеет вид фигуры, составленной из расположенных различным образом плоскостей или кривых поверхностей (рис. 174),
то вес каждой плоскости (поверхности) можно представить так:
где — площади каждой поверхности, ар — вес единицы площади фигуры.
После подстановки этого значения в формулы (1) получаем формулы координат центра тяжести фигуры, составленной из площадей:
Если же однородное тело можно разделить на простые части определенной геометрической формы (рис. 175), то вес каждой части
где — объем каждой части, а у — вес единицы объема тела.
После подстановки значений в формулы (I) получаем формулы для определения координат центра тяжести тела, составленного из однородных объемов;
При решении некоторых задач на определение положения центра тяжести тел иногда необходимо знать, где расположен центр тяжести дуги окружности, кругового сектора или треугольника.
Если известен радиус дуги г и центральный угол 2а, стягиваемый дугой и выраженный в радианах, то положение центра тяжести С (рис. 176, а) относительно центра дуги О определится формулой
Если же задана хорда дуги, то в формуле (5) можно произвести замену
В частном случае для полуокружности обе формулы примут вид (рис. 176, б)
Положение центра тяжести кругового сектора, если задан его радиус r (рис. 176, в), определяется при помощи формулы
Если же задана хорда сектора, то
В частном случае для полукруга обе последние формулы примут вид (рис. 176, г)
Центр тяжести площади любого треугольника расположен от любой стороны на расстоянии, равном одной трети соответствующей высоты.
У прямоугольного треугольника центр тяжести находится на пересечении перпендикуляров, восставленных к катетам из точек, расположенных на расстоянии одной трети длины катетов, считая от вершины прямого угла (рис. 177).
При решении задач на определение положения центра тяжести любого однородного тела, й составленного либо из тонких стержней (линий), либо из пластинок (площадей), либо из объемов, целесообразно придерживаться следующего порядка:
- выполнить рисунок тела, положение центра тяжести которого нужно определить. Так как все размеры тела обычно известны, при этом следует соблюдать масштаб;
- разбить тело на составные части (отрезки линий или площади, или объемы), положение центров тяжести которых определяется исходя из размеров тела;
- определить или длины, или площади, или объемы составных частей;
- выбрать расположение осей координат;
- определить координаты центров тяжести составных частей;
- найденные значения длин или площадей, или объемов отдельных частей, а также координат их центров тяжести подставить в соответствующие формулы и вычислить координаты центра тяжести всего тела;
- по найденным координатам указать на рисунке положение центра тяжести тела.
При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org
Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи
Сайт пишется, поддерживается и управляется коллективом преподавателей
Telegram и логотип telegram являются товарными знаками корпорации Telegram FZ-LLC.
Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.