Как устроен лабораторный блок питания
Перейти к содержимому

Как устроен лабораторный блок питания

  • автор:

Мощный лабораторный блок питания

Не так давно приобрёл паяльную станцию. Давно занимаюсь любительской электроникой, и вот настал момент когда точно осознал что пора. До этого пользовался батиным самопальным блоком, совмещавшим лабораторный блок питания и блок питания низковольтного паяльника. И вот встала передо мной проблема: паяльную станцию я ставлю, а старый блок держать ради хилого и не точного блока питания 0-30в 3А или таки купить нечто современное, с защитой по току и цифровыми индикаторами? Поползав по ебею понял что максимум что мне светит это за 7-10 тыс купить Китайский блок с током максимум в 5А. Жаба сказала своё веское «ква», руки зачесались и…

Теперь к сути. Сформировал требования к блоку: минимум 0-30В, при токах минимум 10А, с регулируемой защитой по току, и с точностью регулировки по напряжению 0.1В. И что б стало ещё интереснее — 2 канала, пусть и от общей земли. Установка напряжения должна быть цифровой, т.е. никаких переменных резисторов, только энкодеры. Фиксированные установки напряжения и запоминание — опционально.

Для индикации состояния выхода были выбраны цифровые китайские комбинированные индикаторы на ЖК, с диапазоном до 199В с точностью 0.1В и до 20А с точностью 0.01А. Что меня полностью устроило. А вот что забыл, так это прикупить к ним шунты, т.к. по наивности думал что они будут в комплекте.

Для первичного преобразования напряжения думал использовать обычный трансформатор с отводами через каждые 6В, коммутируемый релюшками с контроллера, а для регулировки выхода простой эмиттерный повторитель. И всё бы ничего, но когда узнал стоимость и габариты такого трансформатора (30В * 10А = 300вт), то понял что надо быть современнее и использовать импульсные блоки питания.

Пробежавшись по предложениям понял что ничего толкового на мои токи нет, а если и есть, то жаба категорически против. В связи с этим пришла мысль попробовать использовать компьютерные блоки питания, коих всегда у любого ITшника предостаточно. Были откопаны блоки по 350Вт, что обещало 22А по +5В ветке и 16А по 12В. Пробежавшись по интернету нашёл много противоречивых мнений по поводу последовательного соединения блоков, и нашёл умную статью на Радиокоте как это сделать правильно. Но перед этим решил рискнуть и таки взять и нахрапом соединить блоки последовательно, дав нагрузку.

… И получилось!
На фото последовательно соединены 3 блока. Де-факто на выходе 35В, 10.6А.

image

Далее возник вопрос: каким контроллером управлять. По идее ATMega328 тут идёт за глаза, но ЦАПы… Посчитав почём обойдётся хотя б 2 ЦАПа на 12 бит и посмотрев характеристики Arduino DUE с ними на борту, а так же сравнив кол-во требуемых ПИНов, понял что проще и дешевле и быстрее будет просто поставить эту ардуину в блок целиком, вместе с платой.

Постепенно на макетках родилась схема. Приведу её в общем виде, только для одного канала:

image

Схема бьётся на несколько функциональных блоков: Набор блоков питания ATX, блок коммутации БП, блок усилителя напряжения ЦАП Arduino, блок усилителя напряжения токового шунта, блок ограничения напряжения по заданному току.

Блок коммутации БП: В зависимости от заданного пользователем напряжения Ардуино выбирает какую ветку задействовать. Выбирается минимальная по напряжению ветка, на минимум +3В большая заданного. 3В остаются на неточности установки напряжения в блоках питания +

1.2В просада напряжения на переходах транзистора + не большой запас. Одновременно задействованный ключ ветки активирует тот или иной блок питания. Например задав 24В надо активировать все 3 блока питания и подключить выход на +5в 3-го в цепочке, что даст на коллекторе выходного транзистора VT1 +29В, тем самым минимизируя выделяемую тепловую мощность транзистора.

Блок усилителя напряжения: Реализован на операционном усилителе OP1. ОУ используется Rail-to-Rail, однополярый, с большим напряжением питания, в моём случае — AD823. Причём выход ЦАП Ардуино имеет смещение нулевой точки = 0.54В. Т.е. если Вы задаёте напряжение выхода = 0, на выходе де-факто будет присутствовать 0.54В. Но нас это не устраивает, т.к. ОУ усиливает с 0, и напряжение тоже хочется регулировать с 0. Поэтому применён подстроечный резистор R1, вычитающий напряжение. А отдельный стабилизатор на -5В, вместо использования -5В ветки блока питания, используется ввиду нестабильности выдаваемого блоком питания напряжения, меняющимся под нагрузкой. Выход же ОУ охвачен обратной связью с выхода VT1, это сделано что б ОУ сам компенсировал изменения напряжения в зависимости от нагрузки на выходе.

Кстати, о AD823 из Китая по Ебею: день промучился, понять не мог, почему схема не работает от 0 на входе. Если больше 1.5В то всё становится нормально, а иначе всё напряжение питания. Уже подумав что сам дурак, нарвался на рассказ как человек вместо AD823 получил с Китая подделку. Тут же поехал в соседний магазин, купил там, поставил и… О чудо — всё сразу заработало как надо. Игра, найди отличия (подделка в кроватке, справа оригинал. Забавно что подделка выглядит лучше):

image

Далее усилитель напряжение токового шунта. Поскольку токовый шунт достаточно мощный, то и падение напряжения на нём мало, особенно на малых токах. Поэтому добавлен OP2, служащий для усиления напряжения падения шунта. Причём от быстродействия этого ОУ зависит скорость срабатывания предохранителя.

Сам предохранитель, а точнее блок ограничения тока, реализован на компараторе OP2. Усиленное напряжение, соответствующее протекаемому току, сравнивается с напряжением, установленным электронным потенциометром и если оно выше — компаратором открывается VT2, и тот сбрасывает напряжение на базе выходного транзистора, по сути выключая выход. В работе это выглядит так:

image

Теперь к тому, почему в качестве шунта у меня дроссель. Всё просто: как я писал раньше — я просто забыл заказать шунты. А когда уже собирал блок и это выявилось, то ждать с Китая показалось долго, а в магазине дорого. Поэтому не долго думая, порылся в распайке старых компьютерных блоков питания и нашёл дроссели, почти точно подошедшие по сопротивлению. Чуть подобрал и поставил. Дополнительно же это даёт защиту: В случае резкого изменения нагрузки, дроссель сглаживает ток на время, достаточное что б успел отработать ограничитель тока. Это даёт отличную защиту от КЗ, но есть и минус — импульсные нагрузки «сводят блок с ума». Впрочем, для меня это оказалось не критично.

В итоге у меня получился вот такой блок питания:
image
Надписи на лицевой части сделаны с помощью ЛУТа. Индикаторы работы блоков питания выведены на 2-х цветный светодиод. Где красный запитан от дежурных +5в и показывают что блок готов к работе. А зелёный от Power_Good, и показывает что блок задействован и исправен. В свою очередь транзисторная развязка обеспечивает гашение красного светодиода и если у блока проблема — потухнет и красный и зелёный:

image

Маленькие экраны показывают заданные параметры, большие — состояние выхода де-факто. Энкодерами вращением устанавливается напряжение, короткое нажатие — вкл/выкл нагрузки, длинное — выбор режима установки напряжения/максимального тока. Ток ограничен 12.5А на канал. Реально в сумме 15 снимается. Впрочем — на той же элементной базе, с заменой блоков питания на нечто 500-т Ваттное, можно снимать и по 20. Не знаю, стоит ли приводить тут код скетча, простыня большая и достаточно глупая, + везде торчат хвосты под недоделанный функционал вроде коррекции выходного напряжения по АЦП обратной связи и регулировки скорости вентилятора.

Напоследок, пара слов. Оказалось что Arduino DUE при включении после длительного простоя может не начать выполнять программу. Т.е. включаем плату, думаем что сейчас начнёт выполняться наша программа, а в ответ тишина, пока не нажмёшь reset. И всё бы ничего, но внутри корпуса reset нажимать несколько затруднительно.
Поискал по форуму, несколько человек столкнулось с такой же проблемой, но решения не нашли. Ждут когда разработчики поправят проблему. Мне ждать было лениво, поэтому пришлось решать проблему самому. А решение нашлось до безобразия примитивное, впаять электролитический конденсатор на 22мкФ в параллель кнопке. В результате, на момент запуска, пока идёт заряд этого конденсатора, имитируется нажатие кнопки reset. Отлично работает, прошиваться не мешает:

image

В заключение:
По-хорошему надо повесить на все радиаторы датчики температуры и регулировать скорость вентилятора в зависимости от температуры, но пока меня устроила и платка регулятора скорости вентилятора из какого-то FSPшного блока питания.

Ещё хотелось бы через АЦП обратную связь с блоком коммутации на случай залипания релюшки, а так же обратную связь по выходу, дабы компенсировать температурный дрейф подстроечных резисторов (в пределах 0.1в на больших напряжениях бывают отклонения).

А вот кнопки памяти и фиксированные настройки по опыту использования кажутся чем-то не нужным.

Лабораторный блок питания из БП АТ

Собственно, идея сделать лабораторный блок питания с регулируемым выходным напряжением и током из компьютерного – не нова. В интернете встречается немало вариантов подобных переделок.

Преимущества очевидны:
1. Такие блоки питания буквально «валяются под ногами».
2. Они содержат в себе все основные компоненты, а главное, готовые импульсные трансформаторы.
3. Они имеют превосходные массогабаритные характеристики – подобный трансформаторный блок питания весил бы более 10 кг (этот 1,3 кг всего).

Правда, они не лишены и недостатков:
1. Из-за импульсного преобразования – выходное напряжение содержит богатый спектр высокочастотных помех, что делает их ограниченно применимыми для питания радиостанций.
2. Не позволяют гарантированно получить низкое напряжение на выходе (менее 5 В) при малых токах нагрузки. Это относится только к АТ блокам питания, в которых нет дежурного источника. В ATX напряжение регулируется от 0 В.

И, тем не менее, такой блок питания прекрасно подходит для питания автомобильной электроники в домашних условиях, при проверке и отладке электронных устройств. А наличие режима стабилизации тока позволяет использовать его как универсальное зарядное устройство для большой гаммы аккумуляторов!

Выходное напряжение — от 1 до 20 В
Выходной ток — до 10 А
Масса 1,3 кг

Внимание: это первая статья про переделку блока питания. Читайте также вторую часть!

Для начала, давайте разберёмся, какие блоки питания годятся для переделки. Лучшим образом, для лабораторного блока питания годятся как раз старые блоки питания AT или ATX, собранные на ШИМ-контроллере TL494 (он же: μPC494, μА494, KIA494, AZ494AP, M5T494P, UTC51494, KA7500, AZ7500BP, IR3M02, МВ3759, КР1114ЕУ4 и др. аналогах) мощностью 200 – 250 Вт. Таких встречается большинство! Современные ATX12B, на 350 – 450 Вт, конечно тоже не проблема переделать, но всё же они лучше годятся для блоков питания с фиксированным выходным напряжением (например, 13,8 В).

Для дальнейшего понимания сути переделки, рассмотрим принцип работы блока питания для компьютера.

Более-менее стандартизированные блоки питания (PC/XT, AT, PS/2) для компьютеров появились в начале 80-х годов благодаря компании IBM, и просуществовали до 1996 года. Давайте рассмотрим их принцип действия по структурной схеме:

Сетевое напряжение поступает в блок питания через фильтр электромагнитных помех, который препятствует распространению высокочастотных помех от импульсного преобразователя в питающую сеть. За ним следует выпрямитель и сглаживающий фильтр, на выходе которого получаем постоянное напряжение 310 В. Это напряжение поступает на полумостовой инвертор, который преобразует его в прямоугольные импульсы и подаёт на первичную обмотку понижающего трансформатора T1.

Напряжения со вторичных обмоток трансформатора поступают на выпрямители и сглаживающие фильтры. В итоге, на выходе мы получаем необходимые постоянные напряжения.

При подаче питания, в начальный момент, инвертор запускается в режиме автогенерации, а после появления напряжений на вторичных выпрямителях, в работу включатся ШИМ-контроллер (TL494), который синхронизирует работу инвертора, подавая запускающие импульсы в базы ключевых транзисторов через развязывающий трансформатор T2.

В блоке питания используется широтно-импульсное регулирование выходного напряжения. Для увеличения напряжения на выходе, контроллер увеличивает длительность (ширину) импульсов запуска, а для уменьшения – уменьшает.

Стабилизация выходного напряжения в таких блоках питания часто осуществляется только по одному выходному напряжению (+5 В, как самому важному), иногда по двум (+5 и +12), но с приоритетом +5 В. Для этого, на вход компаратора контроллера (вывод 1 TL494, через делитель) поступает выходное напряжение. Контроллер подстраивает ширину импульсов запуска, для поддержания этого напряжения на необходимом уровне.

Также, блок питания имеет систему защиты 2 видов. Первую – от превышения суммарной мощности и короткого замыкания, и вторую, от перенапряжения на выходах. В случае перегрузки, схема останавливает работу генератора импульсов в ШИМ-контроллере (подавая +5 В на вывод 4 TL494).

Кроме того, блок питания содержит узел (на схеме не показан), формирующий на выходе сигнал POWER_GOOD («напряжения в норме»), после выхода блока питания на рабочий режим, разрешающий запуск процессора в компьютере.

Блок питания AT (PC/XT, PS/2) имеет всего 12 основных проводов для подключения к материнской плате (2 разъёма по 6 контактов). В 1995 году компания Intel с ужасом обнаружила, что существующие блоки питания не справляются с возросшей нагрузкой, и ввела стандарт на 20-ти/24-контактный разъём. Кроме того, мощности стабилизатора +3,3 В на материнской плате для питания процессора также перестало хватать, и его перенесли в блок питания. Ну и Microsoft, ввела в операционную систему Windows, режимы управления питанием Advanced Power Management (APM)… Так, в 1996 году появился современный блок питания ATX.</cut>

Рассмотрим отличия блока питания ATX от старых AT по его структурной схеме:

Режим Advanced Power Management (APM) потребовал отказаться от сетевого выключателя и ввести в блок питания второй импульсный преобразователь – источник дежурного напряжения +5 В. Этот маломощный блок питания работает всегда, когда сетевая вилка включена в сеть. Первичное напряжение на него поступает от того же выпрямителя и фильтра, что и на основной инвертор.

Кроме того, питание на ШИМ-контроллер в ATX поступает от этого же дежурного источника (не стабилизированные 12 — 22 В), а автозапуск инвертора отсутствует. Поэтому, блок питания стартует только при наличии импульсов запуска от контроллера. Включение основного блока питания осуществляется включением генератора импульсов ШИМ-контроллера сигналом PS_ON (замыканием его на массу) через схему защиты.

При переделке БП ATX, источник дежурного напряжения нужно сохранить. Во-первых, он будет питать достаточным напряжением ШИМ-контроллер при установке на выходе основного выпрямителя очень низкого напряжения (вплоть до 0 В). Во-вторых, от него можно запитать вентилятор, через 12 В стабилизатор. Характерные особенности переделки именно ATX БП изложены во второй части статьи.

Вот, и все основные отличия.

Как выбрать блок питания для переделки?

Как известно, блоки питания изготавливаются в Китае. А это может повлечь за собой отсутствие некоторых компонентов, которые они сочли «лишними»:

1. На входе может отсутствовать фильтр электромагнитных помех. Самое главное в фильтре – это дроссель, намотанный на ферритовом кольце. Обычно, его прекрасно видно сквозь лопасти вентилятора. Вместо него могут оказаться проволочные перемычки. Наличие фильтра – косвенный признак качественного блока питания!

2. Также, нужно посмотреть на размер понижающего трансформатора (тот который побольше). От него зависит максимальная мощность блока питания. Высота его должна быть не менее 3 см. Встречаются блоки питания с трансформатором высотой менее 2 см. Мощность таких 75 Вт, даже если написано 200.

3. Для проверки работоспособности блока питания подключите к нему нагрузку. Я использую автомобильные лампы фар мощностью 50 – 55 Вт напряжением 12 В. Обязательно одну подсоедините к цепи +5 В (красный провод), а вторую, к цепи +12 В (жёлтый провод). Включите блок питания. Отсоедините разъём вентилятора (или, если на нём сэкономили китайцы, просто остановите рукой). Блок питания не должен пищать.

Спустя минуту отключите его от сети и пощупайте рукой температуру радиаторов и дросселя групповой фильтрации в фильтре вторичных напряжений. Дроссель должен быть холодный, а радиаторы тёплыми, но не раскалёнными!

Я использовал блок питания 1994 года выпуска мощностью 230 Вт – тогда ещё не экономили.

Переделка блока питания

Начать нужно с чистки блока питания от пыли. Для этого отсоедините (отпаяйте) от платы сетевые провода и провода к переключателю 110/220 – он нам больше не понадобится, т.к. в положении 220 В выключатель разомкнут. Выньте плату из корпуса. Пылесос, жёсткая кисточка, и вперёд!

Далее, нужно попытаться найти электрическую принципиальную схему вашего блока питания, или хотя бы максимально на неё похожую (отличаются они не существенно). Она вам поможет ориентироваться в номиналах «отсутствующих» компонентов. Рекомендую искать здесь. Я не исключаю, что, как и мне, вам придётся некоторые узлы срисовывать с платы.

Далее нужно выполнить несколько общих модификаций по установке недостающих частей и умощнению цепей первичного напряжения и инвертора. Рассмотрим на примере электрической схемы моего блока питания.

Номиналы заменяемых компонентов на схеме выделены красным цветом. У вновь устанавливаемых компонентов, красным цветом выделены позиционные обозначения.

1. Проверьте наличие всех конденсаторов и дросселя в фильтре электромагнитных помех. При отсутствии – установите их (у меня отсутствовал только C2). Я также установил второй, дополнительный фильтр помех, выполненный в виде гнезда для подключения сетевого шнура.

2. Посмотрите типы используемых диодов в выпрямителе (D1 – D4). Если там стоят диоды с током до 1 А (например, 1N4007) – замените их минимум на 2-х амперные, или установите диодный мост. У меня стоял 2-х амперный мост.

3. В подавляющем большинстве блоков питания в фильтре первичного напряжения установлены конденсаторы ёмкостью не более 200 мкФ (С5 – С6). Для отдачи полной мощности, замените их конденсаторами ёмкостью 470 – 680 мкФ, подходящими по размерам, напряжением не менее 200 В. Предпочтение следует отдавать группе 105°C.

4. Транзисторы в полумостовом инверторе (Q1, Q2) могут быть самые разнообразные. В принципе, большинство из них греется не криминально. Для снижения нагрева, их можно заменить на более мощные – например, 2SC4706, установив их на радиатор, через изолирующие прокладки. Я пошёл ещё дальше и заменил оба радиатора на более эффективные.

5. В процессе испытания блока питания под максимальной нагрузкой, у меня нагрелся и лопнул конденсатор С7 (обычно это 1 мкФ 250 В). Этот конденсатор не должен греться вообще. Я думаю, он был неисправен, но заменил его всё же на 2,2 мкФ 400 В.

Теперь рассмотрим структурную схему переделанного блока питания:

Для модификации нам потребуется удалить все вторичные выпрямители, кроме одного (правда, заменив в нём почти все компоненты), удалить схему PS_ON (что бы БП ключался автоматически), переделать схему защиты, добавить схему управления, шунт (R1, входит в состав амперметра) и измерительные приборы. Элементы схемы POWER_GOOG тоже можно удалить. Теперь подробнее.

Для снятия выходного напряжения используется 12-ти вольтовая обмотка понижающего трансформатора T1. В наиболее мощных и качественных БП, цепи выпрямителя и фильтра +12 В уже имеют второй дроссель и достаточно места для установки электролитических конденсаторов. Но если в цепи фильтра +12 В нет второго дросселя, то лучший вариант — монтировать всё на месте 5-ти вольтового, а затем, перекинуть на него выводы обмотки 12 В. Ниже я опишу именно второй вариант.

Выпрямитель вторичных напряжений и фильтр, после переделки должны выглядеть следующим образом:

1. Выпаяйте все элементы выпрямителей и фильтров +5, +12 и -12 В. За исключением демпферных цепочек R1, C1, R2, С2 и R3, C3 и дросселя L2. Впоследствии, при выходном напряжении порядка 20 В я заметил нагрев резистора R1 и заменил его на 22 Ом.

2. Отрежьте дорожки, ведущие от 5-ти вольтовых отводов обмотки трансформатора T1 к диодной сборке выпрямителя +5 В, сохранив при этом её соединение с диодами выпрямителя –5 В (он нам ещё понадобится).

3. На месте диодной сборки выпрямителя +5 В (D3) установите сборку на диодах Шоттки на ток 2х30 А и обратное напряжение не менее 100 В, например, 63CPQ100, 60CPQ150. (Штатная 5-ти вольтовая сборка диодов имеет обратное напряжение всего 40 В, а штатные диоды в выпрямителе 12 В рассчитаны на слишком слабый ток – их использовать нельзя.) Эта сборка практически не греется при работе.

4. Соедините толстыми проволочными перемычками выводы 12-ти вольтовой обмотки с установленной диодной сборкой. Демпферные цепи R1, C1, подключенные к этой обмотке, сохранены.

5. В фильтре, вместо штатных, установите электролитические конденсаторы (C5, C6) ёмкостью 1000 – 2200 мкФ на напряжение не менее 25 В. А также добавьте керамические конденсаторы C4 и C7. Установите вместо штатного, нагрузочный резистор 100 Ом, мощностью 2 Вт.

6. Если в процессе проверки блока питания под нагрузкой, дроссель групповой фильтрации (L1) не нагревался, то его достаточно перемотать. Смотайте с него все обмотки, считая витки. (Обычно, 5 В обмотки содержат 10 витков, а 12 В – 20 витков.) Намотайте новую обмотку двумя проводами, сложенными вместе диаметром 1,0 – 1,3 мм (аналогично штатной 5-ти вольтовой) и числом витков 25-27. Если в процессе работы будет греться, то увеличьте число витков до 50-ти.

Если же дроссель грелся, то его сердечник испорчен (есть такая проблема у порошкового железа – «спекается») то придётся искать новый сердечник из порошкового железа (не ферритовый!). Мне пришлось купить кольцевой сердечник белого цвета чуть большего диаметра и намотать новую обмотку. Вообще не греется.

7. Дроссель L2 остаётся штатный, от 5-ти вольтового фильтра (обычно это несколько витков на ферритовом стержне).

8. Для питания вентилятора в БП AT используется 5-ти вольтовая обмотка, и разводка выпрямителя –5 В, которую переделываем в +12. Диоды используются штатные, от выпрямителя –5 В (D1, D2), их необходимо запаять обратной полярностью. Дроссель уже не нужен – запаяйте перемычку. А на место штатного конденсатора фильтра, установите конденсатор ёмкостью 470 мкФ 16 В, естественно, обратной полярностью. Бросьте перемычку от выхода фильтра (бывш. –5 В), к разъёму вентилятора. Непосредственно около разъёма, установите керамический конденсатор C9. Напряжение на вентиляторе у меня составляет +11,8 В, при малых токах нагрузки оно снижается.

Это самый простой способ получить "стабильные" +12 В в регулируемом БП AT для вентилятора. Если же вы переделываете БП ATX то используйте для питания вентилятора напряжение (12-22 В) дежурного источника напряжения, включив вентилятор, если требуется, через стабилизатор 12 В, например 7812. Только увеличьте ёмкости конденсаторов в этом источнике раз в 10. Подробнее этот вопрос изложен во второй части статьи.

Если в вашем БП вентилятор получал питание от схемы управления по температуре, то лучше сохранить её. Это уменьшит шум от работы БП при малых нагрузках.

9. В цепи питания ШИМ-контроллера (Vcc), необходимо увеличить ёмкости конденсаторов фильтров C10 и C11. Напряжение с конденсатора C10 (Vdd) используется для питания цифровых амперметра и вольтметра.

Если вы переделываете БП ATX, в котором имеется источник дежурного напряжения (+5V_SB), – сохраните его! В штатной схеме он используется как второй (параллельный) источник питания для ШИМ-контроллера (развязанный через диод). Это позволит сохранять высокое напряжение питания ШИМ, даже при низком напряжении на выходе блока питания (основного выпрямителя). Подробнее этот вопрос изложен во второй части статьи.

Схема защиты по превышению суммарной мощности остаётся без изменений. Вообще, в блоках питания встречается великое множество вариантов реализации схем защиты по превышению мощности. Не пытайтесь её переделать по этой схеме! Я лишь показал на примере схемы защиты своего БП. Сохраните вашу родную, добавив неё цепочку защиты от перенапряжения.

Изменяется только схема защиты от перенапряжения на выходе. Вот, окончательная схема:

При увеличении нагрузки на инверторе свыше допустимой, увеличивается ширина импульсов на обмотке связи развязывающего трансформатора T2. Диод D1 детектирует их, и на конденсаторе C1 увеличивается отрицательное напряжение. Достигнув определённого уровня (примерно –11 В), оно открывает транзистор Q2 через резистор R3. Напряжение +5 В через открытый транзистор поступит на вывод 4 контроллера, и остановит работу его генератора импульсов. В вашем блоке питания такая защита может быть организована иначе.

Из схемы выпаиваются все диоды и резисторы, подходящие от вторичных выпрямителей к базе Q1, и устанавливается стабилитрон D3 на напряжение 22 В, например, КС522А, и резисторы R8, R9.

В случае аварийного увеличения напряжения на выходе блока питания выше 22 В, стабилитрон "пробьётся" и откроет транзистор Q1. Тот в свою очередь откроет транзистор Q2, через который на вывод 4 контроллера поступит напряжение +5 В, и остановит работу его генератора импульсов.

Осталось собрать схему управления, и подключить её к ШИМ-контроллеру.

Схема управления представляет собой два усилителя (тока и напряжения), которые подключаются к штатным входам компараторов ошибки контроллера. Их у него 2 (выводы 1 и 16 TL494) и работают они по ИЛИ. Это и позволяет получить как стабилизацию напряжения, так и тока. Окончательная схема блока управления:

На операционном усилителе DA1.1 собран дифференциальный усилитель в цепи измерения напряжения. Коэффициент усиления подобран таким образом, что при изменении выходного напряжения блока питания от 0 до 20 В (с учётом падения напряжения на шунте R7), на его выходе сигнал меняется в пределах 0…5 В. Коэффициент усиления зависит от соотношения сопротивлений резисторов R2/R1=R4/R3.

Обратите внимание: для корректного измерения напряжения, резисторы R1 и R3 подключены отдельными тонкими проводами непосредственно к присоединительным клеммам выходного напряжения.

На операционном усилителе DA1.2 собран усилитель в цепи измерения тока. Он усиливает величину падения напряжения на шунте R7. Коэффициент усиления подобран таким образом, что при изменении тока нагрузки блока питания от 0 до 10 А, на его выходе сигнал меняется в пределах 0…5 В. Коэффициент усиления зависит от соотношения сопротивлений резисторов R6/R5.

В качестве датчика тока (R7) я использовал стандартный измерительный шунт от встроенного амперметра 75ШИП1500.5 с довольно низким сопротивлением – 1,5 миллиОма. Поэтому, в цепь измерения я включил ещё и соединительные провода, которыми присоединяется шунт. Это позволило отказаться от дифференциального усилителя и снизить количество проводов. Резистор R5 подключен непосредственно к общему проводу вблизи операционного усилителя, а неинвертирующий вход (вывод 5) подключен к тому же проводу (от R3), идущему к отрицательной клемме.

Порядок действий следующий: сначала находите подходящий амперметр с собственным шунтом (внешним или внутреним), и его же используете в качестве измерительного шунта R7 схемы управления. Сопротивление шунта не важно – пределы регулировки тока потом можно выставить практически под любой шунт, изменением сопротивления R5 (и, при необходимости, – R6) в схеме управления, таким образом, чтобы максимальный предел регулировки стабилизации тока соответствовал 10 А. (Не пугайтесь, с некоторыми шунтами номиналы R5 и R6 получались 1,8 кОм и 30 кОм, соответственно.)

Сигналы с обоих усилителей (напряжения и тока) подаются на входы компараторов ошибки ШИМ-контроллера (выводы 1 и 16 DA2). Для установки необходимых значений напряжения и тока, инвертирующие входы этих компараторов (выводы 2 и 15 DA2) подключены к регулируемым делителям опорного напряжения (переменные резисторы R8, R10). Напряжение +5 В для этих делителей снимается с внутреннего источника опорного напряжения ШИМ-контроллера (вывод 14 DA2).

Резисторы R9, R11 ограничивают нижний порог регулировки. Конденсаторы C2, C3 устраняют возможный «шум» при повороте движка переменного резистора. Резисторы R14, R15 также установлены на случай «обрыва» движка переменного резистора.

На операционном усилителе DA1.4 собран компаратор для индикации перехода блока питания в режим стабилизации тока (LED1).

В схеме я использовал счетверённый операционный усилитель LM324A, но можно использовать и другие, работающие в широком диапазоне питающих напряжений, например, LM2902, KIA324, AN6564, HA17324, KA2504, TLE2024, К1401УД2 (у отечественного выводы питания расположены зеркально!), или использовать два сдвоенных – LM358, LM2904, MC4558, AN6561, HA17904, TLE2022, К1040УД1. Питание на него (Vcc) подаётся от цепи питания ШИМ-контроллера (от вывода 12 DA2) которое варьируется в пределах 5…25 В, в зависимости от выходного напряжения блока питания.

Несколько улучшенный вариант блока управления приведён во второй части статьи.

Элементы регулировки R8 – R11, а также конденсаторы C2 и C3 расположены на небольшой отдельной плате, привинченной к передней панели блока питания. Все остальные элементы схемы расположены на свободном месте печатной платы блока питания. Если места на плате нет, то схему управления можно собрать на отдельной плате. Скачать печатную плату можно здесь.

Для подключения усилителей к ШИМ-контроллеру (DA2), нужно предварительно отпаять от него все штатные компоненты, идущие к выводам 1, 2, 3, 15 и 16. Конденсаторы C4 и C5 расположены в непосредственной близости от TL494 (по сути, в штатных местах).

Для измерения и отображения выходного напряжения и тока я использовал готовые цифровые вольтметр и амперметр, подключенные по схеме согласно прилагаемой к ним инструкции. Питание на них подаётся с конденсатора C10 (см. схему вторичных выпрямителей). Если в вашем распоряжении окажется блок питания ATX с источником дежурного питания, то питание на измерители (Vdd) подавайте от этого источника – он имеет выход нестабилизированного напряжения +12…+22 В.

Для подключения этих приборов удобно использовать разъёмы для Floppy дисководов, имеющиеся на штатных проводах блока питания AT.

Обратите внимание, что измерительные выводы вольтметра присоединяются отдельными тонкими проводами непосредственно к выходным клеммам блока питания. А измерительные выводы амперметра – непосредственно к измерительным контактам шунта. Это отображено на схеме.

Часть штатного металлического корпуса (дно и боковая стенка) блока питания в моей конструкции выполняет роль шасси для платы и для шунта.

Для снижения уровня высокочастотных помех, непосредственно на выходных клеммах расположены керамические конденсаторы ёмкостью 1 мкФ (C6, C7 на схеме блока управления).</cut>

Для своего блока питания я использовал готовый корпус с ручкой для переноски. Для охлаждения используется вентилятор Ø50 мм. Он гонит воздух внутрь корпуса. Для этого в корпусе было вырезано необходимое отверстие напротив радиаторов, а на противоположной стороне и задней стенке, высверлены отверстия для выхода воздуха. Идея оформления зависит только от вашего вкуса.

Если вы намереваетесь использовать такой блок питания для радиостанций, то я настоятельно рекомендую сохранить в конструкции штатный металлический корпус – он отлично экранирует и снижает уровень электромагнитных помех, излучаемых инвертором.

Как сделать самодельный регулируемый блок питания – подборка схем

Регулируемый блок питания (БП) – один из основных приборов в арсенале радиотехника и электронщика. Он необходим при сборке и отладке практически любого электронного устройства. Можно, конечно, этот прибор купить, отдав немалые деньги, а можно собрать самостоятельно. В этой статье мы рассмотрим схемы БП разной сложности и соберем регулируемый блок питания своими руками.

Простые схемы

Начнем с самых простых схем, собрать которые сможет даже начинающий радиотехник. Но несмотря на простоту и ограниченный функционал, они вполне годятся для питания во время отладки большинства конструкций самостоятельной сборки.

Трансформаторный регулируемый блок питания с симисторным регулятором

Предлагаемый БП довольно прост в изготовлении и позволяет получить постоянное напряжение величиной от 4 до 25 В. Принцип регулирования – фазоимпульсный. Выходной ток зависит от мощности трансформатора и при указанных на схеме элементах может достигать 10 А.

Как сделать самодельный регулируемый блок питания - подборка схем

Рассмотрим работу устройства более подробно. Сетевое напряжение подается на первичную обмотку трансформатора Т1 через симистор VS1. Сразу после включения БП симистор закрыт, ток через обмотку трансформатора не течет. При появлении положительной полуволны конденсатор С2 начинает заряжаться через резистор R3 и диод VD1 моста VD1-VD4. Как только напряжение на нем достигнет 160 В, зажжется неоновая лампа HL1 и конденсатор разрядится через управляющий электрод симистора, одновременно открывая его. При этом на сетевую обмотку Т1 начнет поступать напряжение. По окончании полуволны симистор закрывается.

Одновременно этот же резистор через диод VD3 моста подключается параллельно первичной обмотке трансформатора Т1. Сделано это для того, чтобы симистор после короткого открывающего импульса сразу же не закрылся. Ведь он работает на реактивную нагрузку, ток через которую достигнет значения удержания симистором не сразу.

При появлении отрицательной полуволны процесс повторяется, но конденсатор теперь заряжается напряжением обратной полярности через резистор R5 и диод VD2 моста. Соответственно, при зажигании лампы HL1 к управляющему электроду прикладывается напряжение другой полярности, открывая симистор в обратном направлении. Во время этой фазы параллельно сетевой обмотке подключается резистор R5 через диод VD4.

Время зарядки конденсатора зависит от положения движка переменного резистора R1. Таким образом, при каждой полуволне симистор будет открываться с той или иной задержкой, отсекая передний ее фронт. Чем большая часть полуволны будет отсечена, тем меньшее действующее напряжение будет на первичной, а значит, и на вторичной обмотке сетевого трансформатора. Диоды VD3 и VD4 подключают резисторы.

На месте Т1 может работать любой силовой трансформатор с выходным напряжением 28-30 В. От мощности трансформатора, как было замечено выше, будет зависеть максимальный выходной ток БП. Диоды Д226 можно заменить на любые выпрямительные, рассчитанные на ток не менее 200 мА и напряжение не менее 300 В. Конденсаторы С1, С2 неполярные. КУ208Г можно заменить на КУ208В. Вместо диодов Д245 подойдут любые из серий Д242, Д245, КД213, КД210, Д243, выдерживающие обратное напряжение 50 В и ток 10 А. Конденсатор С5 керамический неполярный.

Диоды VD5-VD8 и симистор VS1 необходимо установить на радиаторы с площадью рассеяния не менее 100 см 2 каждый. Если радиатор общий, то элементы придется устанавливать через изолирующие прокладки. При этом площадь рассеяния такого радиатора должна быть соответственно увеличена.

Настройка блока питания сводится к установке необходимого диапазона регулировки напряжения подстроечным резистором R2. Если устройство работает нестабильно (это будет заметно по провалам в свечении лампы HL1 и нестабильному выходному напряжению), то можно попробовать уменьшить номинал резистора R4 до 150 Ом.

Меняем симистор на тиристор

Если в вашем распоряжении не оказалось симистора, можно обойтись обычным тиристором, немного изменив схему его включения.

Как сделать самодельный регулируемый блок питания - подборка схем

Поскольку тиристор не может работать в цепи переменного тока, он питает первичную обмотку трансформатора Тr1 через диодный мост. Схема фазоимпульсного управления представляет собой аналог однопереходного транзистора, собранного на Т1, Т2. Питается схема от простейшего параметрического стабилизатора, состоящего из мощного стабилитрона D1 и токоограничивающего резистора R1.

При появлении полуволны начинается зарядка конденсатора С1. Скорость зарядки можно регулировать при помощи переменного резистора P1. Как только напряжение на конденсаторе достигнет определенного уровня, откроется аналог однопереходного транзистора и разрядит конденсатор через управляющий электрод тиристора VS1. Последний откроется, закоротит диодный мост, который в свою очередь подаст на обмотку Тr1 переменное напряжение. По окончании полуволны тиристор закроется. В начале следующей полуволны процесс повторится.

На месте VD1-VD4 могут работать любые высоковольтные выпрямительные диоды, выдерживающие ток более 3 А и обратное напряжение не менее 300 В. КТ605 можно заменить на КТ809А, КТ629, КТ935 или MJE340. Вместо КТ361 можно поставить КТ361Е, КТ502Г, КТ502В, КТ3107А, КТ501Ж – KT501K. Тиристор КУ202Н заменим на КУ202М. Конденсатор С1 неполярный. Стабилитрон D1 любой на напряжение стабилизации 14-24 В, выдерживающий ток 1 А. Остальные элементы такие же, что и в предыдущей схеме. Диоды обоих мостов и тиристор установлены на радиаторы.

Универсальные схемы регуляторов напряжения и тока на линейных регуляторах LMxxx для любого блока питания

Для сборки регулируемых блоков питания своими руками очень удобно использовать интегральные стабилизаторы напряжения серии LMххх (отечественный аналог КР142ЕНхх). Рассмотрим несколько схем регулировки напряжения и тока на этих микросхемах.

Линейный регулятор напряжения

Этот регулятор собран на весьма популярной микросхеме LM317, представляющей собой интегральный регулируемый стабилизатор напряжения. Схема позволяет изменять выходное напряжение в пределах 4…30 В и может быть использована в блоках питания любого типа.

Как сделать самодельный регулируемый блок питания - подборка схем

Поскольку микросхема относительно маломощная (максимальный ток 1.5 А), в качестве силового ключа в конструкцию добавлен мощный транзистор Т1. Регулировка производится при помощи переменного резистора P1. Вместо транзистора КТ819АМ можно использовать приборы этой же серии с буквами БМ-ГМ. Отечественный аналог LM317 – КР142ЕН12А. Конденсатор С3 керамический. Транзистор Т1 и микросхема DD1 устанавливаются на радиаторы с площадью рассеивания не менее 100 см 2 каждый. Схема довольно простая и может быть выполнена навесным монтажом, но для тех, кто любит делать все “по уму”, приведем печатную плату стабилизатора.

Как сделать самодельный регулируемый блок питания - подборка схем

Печатная плата регулятора

Регулятор тока

Этот регулятор тоже использует интегральный стабилизатор напряжения LM317, но включенный по схеме стабилизации тока.

Как сделать самодельный регулируемый блок питания - подборка схем

Как и в предыдущей схеме, здесь в качестве силового ключа используется мощный транзистор T1. Регулировка тока производится переменным резистором P1. В крайнем верхнем по схеме положении движка ток максимальный, в нижнем – минимальный. Диапазон регулировки – 500 мА … 12 А. Диод D2, включенный последовательно D1, служит для уменьшения нижнего порога регулировки.

В регуляторе можно использовать любые пятнадцатиамперные диоды, выдерживающие обратное напряжение 50 В, КТ818АМ можно заменить на полупроводник той же серии с буквами БМ-ГМ. Конденсатор С3 керамический. Отечественный аналог LM317 – КР142ЕН12А. Резистор R2 должен иметь мощность не менее 10 Вт. Его можно изготовить из обмоточного провода диаметром 0.8-1 мм, взяв кусок необходимой длины. Транзистор VT1 и диоды D1, D2 необходимо установить на радиаторы. Если радиатор общий, то элементы необходимо установить через изолирующие прокладки.

Если необходимо снизить верхний порог регулировки тока, то сопротивление резистора R2 нужно уменьшить. Рассчитать номинал резистора можно по формуле: I = 1.2/R, где I – необходимый максимальный ток в амперах, R – сопротивление резистора R2 в омах.

Экономичный регулятор – стабилизатор тока

Рассмотренная выше схема, нужно признать, не самая удачная. На токоизмерительном резисторе и диодах D1, D2 бесполезно рассеивается приличная мощность. Массогабаритные показатели узла из-за этих же элементов оставляют желать лучшего.

Предлагаемая ниже схема лишена вышеперечисленных недостатков. В ней отсутствуют мощные диоды вольтдобавки, а токоизмерительный резистор имеет очень малое сопротивление, что уменьшает потребляемую им мощность на порядок. Диапазон же регулировки тока у этой конструкции составляет 0 … 10 А, что вполне отвечает требованиям, предъявляемым к лабораторным источникам питания.

Как сделать самодельный регулируемый блок питания - подборка схем

Сердцем регулятора-стабилизатора является операционный усилитель LM358, управляющий ключом на мощном полевом транзисторе Т1. Резисторы R1, R2, R3 совместно со стабилитроном D1 представляют собой генератор опорного напряжения, регулировка тока производится при помощи переменного резистора R3. Резистор R5 токоизмерительный. Он выполнен из отрезка обмоточного провода диаметром 0.5-0.8 мм.

На место T1 можно установить транзистор STP55NF06, стабилитрон 1N4734A заменим на любой маломощный с напряжением стабилизации 5.6 В. Отечественные аналоги микросхемы LM358 – КР1401УД5, КР1053УД2, КР1040УД1. Транзистор Т1 должен быть установлен на радиатор с площадью рассеивания не менее 100 см 2 .

Лабораторный блок питания с регулировкой напряжения и ограничением по току

Ну а теперь попробуем из вышеприведенных узлов собрать блок питания, при помощи которого можно регулировать выходное напряжение и устанавливать ограничение по току. При этом и напряжение, и установленный ток будут стабилизированными.

Как сделать самодельный регулируемый блок питания - подборка схем

Сетевое напряжение понижается до 25 В силовым трансформатором Тr1, выпрямляется диодным мостом VD1-VD4, сглаживается конденсатором С1 и поступает на регулируемый стабилизатор, собранный на микросхеме DD1 и транзисторе Т1. Регулировка производится переменным резистором P1.

Далее напряжение установленной нами величины подается на регулятор-стабилизатор тока (микросхема DD2, транзистор Т2). Регулировка величины тока производится переменным резистором P2. Более подробно оба эти узла описаны выше. Поскольку микросхема LM358 не может работать при напряжении питания ниже 7 В, она и генератор опорной частоты (стабилитрон D1) подключены непосредственно к выходу выпрямителя.

В конструкции можно использовать любой сетевой трансформатор соответствующей мощности со вторичной обмоткой на 25-28 В. Диоды VD1-VD4 можно заменить на любые выпрямительные, рассчитанные на ток не менее 10 А и выдерживающие обратное напряжение не менее 40 В. Их, как и силовые транзисторы T1, T2, необходимо установить на радиаторы.

Схема на транзисторах

Несмотря на богатый выбор микросхем самого различного назначения блоки питания на транзисторах не теряют популярности. Попробуем и мы построить лабораторный БП на этих полупроводниковых приборах.

Как сделать самодельный регулируемый блок питания - подборка схем

В этой схеме регулятор-стабилизатор напряжения собран на транзисторах T1, T2. В качестве генератора опорного напряжения используется регулируемый стабилитрон D1. Регулировать напряжение в диапазоне 2.5…20 В можно переменным резистором P1.

Регулятор тока собран на транзисторах Т3, Т4 и стабилитроне D2, исполняющем роль источника опорного напряжения. В качестве токоизмерительного элемента используется сам полевой транзистор T4. Если падение напряжения на нем превысит определенный порог, транзистор Т3 начнет открываться и шунтировать Т4, заставляя его закрываться и ограничивать ток через нагрузку. Регулировка порога ограничения производится переменным резистором P2.

В схеме вместо диодной сборки KBPC2510 можно использовать отдельные диоды, выдерживающие ток 10 А и обратное напряжение не менее 30 В. Подойдут, к примеру, Д245, Д242. На месте Т1 может работать КТ805 или КТ819, Т2 заменяем на КТ867А. КТ315 можно заменить на КТ315Б-Д, КТ3102А, КТ312Б, КТ503В-Г, П307. Отечественный аналог TL431 — КР142ЕН19А. Диодный мост, Т1, Т2 и Т4 нужно установить на радиаторы.

Запитать устройство можно от любого сетевого трансформатора с выходным напряжением 20-25 В, способного обеспечить ток в нагрузке не менее 15 А.

Использование импульсных преобразователей

До этого мы строили блоки питания на дискретных элементах, но для этого можно использовать готовые модули. В интернете можно найти все что угодно, а стоит это «что угодно», как правило, недорого. Для работы таких преобразователей на вход нужно подать постоянное напряжение, подойдет любой блок питания с соответствующим выходным напряжением (12-24-36 вольт), например, от ноутбука, или несколько блоков питания для светодиодной ленты одинаковой мощности, соединённых последовательно.

Для начала рассмотрим несколько наиболее популярных преобразователей DC/DC, которые можно использовать для построения лабораторных блоков питания.

Понижающий импульсный преобразователь XL4016

Несмотря на относительно невысокую стоимость, этот преобразователь обладает неплохими характеристиками:

  • Uвх. – 3…40 В;
  • Uвых. – 1.2…35 В (регулируется);
  • Iвх. макс. – 10 А;
  • I вых. – 140 мА…12 А (регулируется);
  • P вых. макс. – 300 Вт (при принудительном охлаждении);
  • I холостого хода – 25 мА;
  • защита от КЗ и перегрева – есть.

Ток и напряжение плавно регулируются при помощи подстроечных многооборотных резисторов, которые в лабораторном БП лучше заменить на потенциометры.

Как сделать самодельный регулируемый блок питания - подборка схем

Схема включения модуля довольно простая и осуществляется при помощи винтовой колодки с четырьмя клеммами. На первые две клеммы подаем входное напряжение, соблюдая полярность, с двух других снимаем ток и напряжение, заданные подстроечными резисторами.

Схема включения импульсного преобразователя XL4016

Существует модификация этого преобразователя, имеющая выходную мощность 80 Вт (Iвых. макс. – 8 А). Внешне она выглядит практически так же, но стоит в полтора раза дешевле и не имеет защиты от КЗ и переполюсовки/перегрева. В остальном эта модификация ничем не отличается от предыдущей.

Как сделать самодельный регулируемый блок питания - подборка схем

Повышающий импульсный преобразователь XL4016

Несмотря на то же «имя» и внешнее сходство этот преобразователь имеет существенное отличие от двух предыдущих. Во-первых, он позволяет регулировать только выходное напряжение, причем в гораздо более узком диапазоне. Во-вторых, он повышающий. То есть с его помощью можно получить выходное напряжение выше, чем входное.

Как сделать самодельный регулируемый блок питания - подборка схем

Остальные характеристики модуля следующие:

  • Uвх. – 10…32 В;
  • Uвых. – 12…35 В (регулируется);
  • Iвх. макс. – 10 А;
  • I вых. – 140 мА…6 А (регулируется);
  • P вых. макс. – 150 Вт (при принудительном охлаждении);
  • I холостого хода – 25 мА;
  • защита от КЗ и переполюсовки – нет.

Приобрести модули XL4016 всех вышеперечисленных модификаций можно на Алиэкспресс. Стоимость – от $3 до $4.

DC to DC Step Down Buck Converter 5V-30V to 0.8V-29V 5A

Практически готовый лабораторный блок питания, позволяющий получить напряжения в диапазоне 0.8…29 В и ограничивать ток от 0 до 5 А.

Как сделать самодельный регулируемый блок питания - подборка схем

Как видно из фото, блок состоит из двух модулей – регулировок и измерения. При помощи первого мы регулируем параметры выходного напряжения, второй представляет собой цифровой вольтамперметр с возможностью передачи данных на ПК по интерфейсу RX-TX.

Как сделать самодельный регулируемый блок питания - подборка схем

Питается модуль от любого источника постоянного напряжения 5…30 В соответствующей мощности. КПД устройства, если верить производителю, составляет 95%. Выходное напряжение можно регулировать в пределах 0.8…29 В, ток – 0.1…5 А. При выходном токе выше 3 А необходимо использовать принудительное охлаждение.

Стоит такое удовольствие $5.85, а приобрести его можно здесь. Схема подключения модуля предельно проста. На вход подаем питание, с выхода снимаем то, что желаем, устанавливая параметры при помощи подстроечных резисторов. Для подключения устройства к ПК служит трехконтактный разъем на плате дисплея. Распиновка его указана ниже. Двухконтактный разъем не используется.

Как сделать самодельный регулируемый блок питания - подборка схем

Для оперативной регулировки напряжения и тока подстроечные резисторы (оба номиналом 10 кОм) стоит заменить на переменные, расположив их на лицевой панели блока питания.

Импульсный преобразователь CN4015-3.1

Этот понижающий преобразователь менее мощный, чем предыдущая модель, но имеет встроенный цифровой дисплей и тоже позволяет регулировать ток и напряжение.

Как сделать самодельный регулируемый блок питания - подборка схем

Основные характеристики этого модуля следующие:

  • Uвх. – 5…36 В;
  • Uвых. – 1.2…32 В (регулируется);
  • Iвых. – 0…5 А;
  • Pвых. – 75 Вт;
  • защита от КЗ и перегрева – есть.

Поскольку дисплей однострочный, он используется для отображения величины как напряжения, так и тока. Для переключения режима служит механическая кнопка. Не совсем удобно, но вполне приемлемо. Дополнительно на этот же индикатор можно вывести значение величины входного напряжения. Есть режим калибровки амперметра и вольтметра по контрольным приборам.

Также устройство оснащено портом USB для зарядки гаджетов и светодиодной индикацией режимов – наличие входного/выходного напряжений, режим стабилизации и пр. Со схемой подключения и назначением органов управления/индикации можно познакомиться на рисунке, приведенном ниже.

Как сделать самодельный регулируемый блок питания - подборка схем

Приобрести этот преобразователь можно на Алиэкспресс за $4, перейдя по этой ссылке.

Напряжение на порте USB соответствует установленному выходному напряжению, а не фиксированным 5 В. С одной стороны, это позволяет производить ускоренную зарядку, с другой, можно запросто сжечь гаджет, рассчитанный не более чем на 5 В.

Импульсный преобразователь повышенной мощности

Этот модуль может обеспечить ток до 20 А, обладает расширенным диапазоном регулировки напряжения, и им мы закончим наш небольшой обзор импульсных преобразователей DC/DC с регулировкой по выходу. Устройство позволяет плавно регулировать ток и напряжение, имеет защиту от КЗ, перегрева и перегрузки.

Взглянем на основные характеристики модуля:

  • Uвх. – 6…40 В;
  • Uвых. – 1.2…36 В (регулируется);
  • Iвых. – 0…20 А (рекомендуется не более 15 А);
  • Pвых. – 300 Вт;
  • защита от КЗ – есть (самовосстановление, не держит длительной перегрузки).

Модуль имеет светодиодную индикацию работы и переключатель, отключающий выходное напряжение. Схема включения преобразователя и назначение органов управления приведены ниже, а сам модуль можно приобрести за $3.3 на все том же Алиэкспресс.

Как сделать самодельный регулируемый блок питания - подборка схем

Цифровой лабораторный блок питания из модулей с Алиэкспресс

Рассмотренные преобразователи позволяют собрать простой лабораторный блок питания, который вполне способен работать в мастерской по ремонту или у радиолюбителя. Но если вы хотите больше полезных функций, простое и наглядное управление, то обратите своё внимание на преобразователи напряжения ЖК-дисплеем и цифровым управлением. Такие модульные преобразователи можно купить на Алиэкспресс.

Импульсный преобразователь MDP-XP

По сути, устройство является готовым блоком питания с регулировкой по току и напряжению, а в этот раздел оно попало лишь потому, что выполнено в виде отдельных модулей и с возможностью наращивания архитектуры подключением дополнительных компонентов.

преобразователь MDP-XP

Один из модулей является, собственно, преобразователь, и он может работать самостоятельно. Второй – модуль управления, расширяющий возможности первого модуля и обеспечивающий дополнительные удобства. Предлагаем посмотреть подробное видео об этом преобразователе и как с ним работать.

Модуль питания MDP-P905

MDP-P905 представляет собой импульсный понижающий и повышающий DC/DC преобразователь с регулировкой напряжения в пределах 1.2…30 В и тока в интервале 0…5 А. Устройство имеет режим стабилизации тока, настраиваемую защиту от перегрузки по току и мощности. Преобразователь может работать практически с любым блоком питания с напряжением 4.2…30 В соответствующей мощности, от которой зависит отдаваемая модулем нагрузка.

Настройка прибора производится при помощи трех кнопок, валкодера и дисплея. На дисплее можно увидеть информацию по входному и выходному напряжению, току, отдаваемой мощности и температуре платы преобразователя. Этот же дисплей используется для установки величины тока и напряжения. Также имеется два входа для подачи входного напряжения, порт USB для программирования (он же для питания модуля управления) и два гнезда для подключения выходного кабеля. Назначение разъемов и органов управления изображено на фото ниже.

Назначение разъемов и органов управления

Для того чтобы запустить этот блок, его необходимо запрограммировать. Сделать это несложно. Достаточно зайти на сайт производителя, скачать файл на ПК и перенести его на модуль, подключив последний к ПК через интерфейс USB. Подключаем блок питания с выходным напряжением не более 30 В, оснащенный коннектором 5.5х2.5 (такие используются для питания ноутбуков) или вилкой USB С. К выходным гнездам подключаем кабель питания нагрузки и можно работать. Про помощи функциональных кнопок выбираем нужный режим, настраиваем необходимые выходные ток и напряжение, подключаем нагрузку.

Модуль управления MDP-M01

Этот блок, как было отмечено выше, расширяет функционал модуля питания. При необходимости к нему можно подключить до шести таких модулей для независимой или совместной работы.

Модуль управления MDP-M01

Модуль управления MDP-M01

С MDP-XP блок соединяется по беспроводному каналу. Единственное, что он требует для работы, – напряжение 5 В, которое можно получить от любого соответствующего адаптера с USB-разъёмом или подключив его к MDP-XP соответствующим кабелем (идет в комплекте). Ну и конечно, MDP-M01 нужно запрограммировать, скачав файл с сайта производителя и установив связь с модулем питания по беспроводному каналу.

Управление устройством и подключенными к нему модулями питания осуществляется при помощи пяти функциональных кнопок и двух поворотных ручек. Графический цветной дисплей служит для отображения входного и выходного текущих токов и напряжений, потребляемой мощности, отданного количества энергии, предустановленных величин U и I. Дополнительно на этом же дисплее мы можем увидеть график, на котором отображается напряжение питания нагрузки и потребляемый ею ток.

Вариант отображения информации на дисплее

Вариант отображения информации на дисплее

В комплекте с устройством идет кабель для подключения к выходу преобразователя и сопряжения модуля питания с модулем управления. Блок питания в комплект не входит.

Комплект, как мы убедились, неплохой. Огорчает лишь одно – даже в минимальной конфигурации он стоит немалых денег. Ну а кто все же решится, может приобрести его тут.

Набор DPS5020-USB-BT для сборки лабораторного блока питания

Набор хоть и не из дешевых, но имеет в комплекте все, необходимое для сборки мощного регулируемого лабораторного блока питания, включая многофункциональный дисплей и платы сопряжения с ПК по USB или Bluetooth (опция). Единственное, придется докупить или изготовить подходящих размеров корпус и импульсный блок питания AC/DC соответствующей мощности. Но об этом позже.

Как сделать самодельный регулируемый блок питания - подборка схем

Основной блок импульсного преобразователя питается от внешнего блока питания с напряжением 6…60 В. При этом выходное напряжение можно выставить в диапазоне 5…50 В, а ток регулируется от 0 до 20 А (при соответствующей мощности блока питания).

преобразователь DPS3012

Основные характеристики модуля импульсного преобразователя:

  • Uвх. – 6…60 В;
  • Uвых. – 5…50 В (регулируется);
  • Iвых. – 0…20 А (регулируется);
  • Pвых. – до 1000 Вт;
  • точность регулировки напряжения – 0.01 В;
  • точность регулировки тока – 0.01 А.

Модуль оснащен одним гнездом, к которому можно подключить идущим в комплекте шлейфом (в комплекте) адаптер USB или Bluetooth в зависимости от того, какой узел необходим. Охлаждение силовых транзисторов, установленных на радиатор, принудительное.

Четырехстрочный цветной дисплей имеет встроенный контроллер, 3 кнопки управления и валкодер для установки напряжения, ограничения тока и мощности. Подключается к модулю преобразователя при помощи двух шлейфов (в комплекте). На дисплее можно увидеть величины входного и выходного напряжения, выходной ток, уровень срабатывания защиты и текущую выходную мощность.

Как сделать самодельный регулируемый блок питания - подборка схем

Верхний диапазон измерений прибора – 30 В и 3 А. Для его расширения на импульсном преобразователе установлены шунты и добавочные резисторы.

Как можно увидеть из описания, для сборки лабораторного блока питания из этих модулей не понадобится даже паяльник. Все на колодках. Набор DPS5020-USB-BT можно найти по этой ссылке.

Теперь о корпусе. Его, конечно, можно изготовить самостоятельно, но на том же Алике можно найти еще один набор, в который входит корпус, дополнительный вентилятор охлаждения с преобразователем 12 В для его питания, гнезда для подключения нагрузки и внешнего источника питания, выключатель, провода, наконечники и крепежные винты.

Набор для сборки блока питания из комплекта DPS5020-USB-BT

Ну и несколько фото процесса сборки.

Как сделать самодельный регулируемый блок питания - подборка схемКак сделать самодельный регулируемый блок питания - подборка схемКак сделать самодельный регулируемый блок питания - подборка схем

Импульсный преобразователь с дисплеем DP50V5A

Ну и напоследок, собранная на базе дисплея DPS3003 конструкция. Такой дисплей использовался в блоке питания, описанном выше. Конструкторы не стали мудрствовать и просто прикрутили небольшой импульсный преобразователь прямо к дисплею. Получилась довольно компактная конструкция, позволяющая регулировать выходное напряжение в диапазоне 0…50 В, а ток 0…5 А

Преобразователь DP50V5A

Основные характеристики этого устройства следующие:

  • Uвх. – 6…55 В;
  • Uвых. – 0…50 В (регулируется);
  • Iвых. – 0…5 А (регулируется);
  • Pвых. – до 250 Вт.

Подключение такого устройства не составит труда – 2 винтовые клеммы, расположенные сзади дисплея, промаркированы:

  • +IN – плюс Uвх.;
  • -IN – минус Uвх.;
  • +OUT – плюс Uвых.;
  • -OUT – минус Uвых.

Купить такое устройство можно, перейдя по этой ссылке:

Инструкция по переделке компьютерного блока питания в лабораторный

Любой БП от компьютера – практически готовый мощный и надежный лабораторный блок питания. Единственное, чего ему не хватает, – регулировки напряжения и тока. Но для того, кто читает схемы и умеет держать в руках паяльник, это не проблема. К примеру, переделка компьютерного БП ATX, собранного на ШИМ-контроллере TL494 или его аналоге, будет выглядеть следующим образом:

Отключаем узел стабилизации выходного напряжения. Для этого выпаиваем два резистора, которые соединяют вывод 1 микросхемы ШИМ-контроллера с шинами +12 и +5 В. На приведенном ниже фото отключение делается путем перекусывания перемычки.

Как сделать самодельный регулируемый блок питания - подборка схем

Отключаем защиту от перенапряжения. Тут есть два варианта:

  1. Выпаиваем диод, отвечающий за узел защиты.
  2. Отрезаем 4 ножку микросхемы ШИМ-контроллера и подключаем ее к общей шине питания.

Меняем конденсаторы. Выпаиваем все сглаживающие конденсаторы по линиям +12, -12, +5, -5, +3,3 В. По шине +12 В устанавливаем конденсаторы той же емкости, что и стояли, но на рабочее напряжение не ниже 35 В.

Теперь наш БП выдает напряжение порядка 28 В (по бывшей шине +12 В), можно двигаться дальше. Собираем простенькую схему регулировки тока и напряжения.

Как сделать самодельный регулируемый блок питания - подборка схем

Напряжение в этой схеме регулируется резистором R14, а ток – резистором R17. Оснащаем нашу конструкцию измерительными приборами, подключаем к доработанному БП, и лабораторный блок питания готов. С его помощью мы можем регулировать напряжение в диапазоне 1.2…28 В и изменять ток от 0 до 8 А. Более подробно о такой переделке и о разновидностях блоков питания ПК можно прочитать в статье «что можно сделать из блока питания от компьютера».

На этом беседу о лабораторных блоках питания можно закончить. Как вы убедились, схем подобных конструкций великое множество, причем самой разной сложности. Выбор же конкретного варианта будет зависеть только от ваших умения и желания.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *